News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

New Plastic Artificial Cell with Working Organelles Could Be Adapted to Deliver Diagnostic Biomarkers Directly into Living Cells

Advances in artificial cell architecture and complex function may make it possible to develop a way for pathologists to deliver biomarkers into living cells to diagnosis diseases and monitor patient response to therapies

For the first time, researchers have used polymers to produce an artificial eukaryotic cell with working organelles. Like a living cell, it successfully performed multiple chemical reactions. The importance for pathologists and clinical laboratory professionals is that the same technology could allow scientists to develop different ways to deliver biomarkers into cells to reveal diagnostic information—and perhaps even track a patient’s progress in therapy.

Dutch Researchers Get Closer to Unlocking the Complexity of a Living Cell
(more…)

Harvard Researchers’ New DNA Barcoding May Give Pathologists Expanded Capabilities in Fluorescence Microscopy

New biomedical imaging technology could enhance pathologists’ ability to examine tissue samples via fluorescence microscopy

Scientists at Harvard University’s Wyss Institute for Biologically Inspired Engineering have developed a new DNA, barcoding technique. The fluorescence microscopy approach has significant implications for the imaging community.

Beyond imaging, however, pathologists will be able to use this same technology when evaluating tissue specimens.

The new method could enable simultaneous imaging of many different types of molecules in a single cell, according to Peng Yin, Ph.D., Associate Professor of Systems Biology at Harvard Medical School and Core Faculty Member at Wyss Institute. The developers expect the method to provide researchers with a richer, more accurate view of cell behavior than is possible using current techniques. (more…)

;