News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Prenatal Testing Incidentally Finds Cancer in Mothers, Becomes Focus of New National Institutes of Health Long-term Study

Discovery could lead to new clinical laboratory testing for cancer screening in new mothers

Any clinical laboratory test that returns unexpected results is worth looking into more deeply. Such was the case with a recent study conducted by the National Institutes of Health (NIH), which investigated cases of pregnant women who received “unusual” results to prenatal lab tests conducted at a dozen labs in North America.

Following cancer screening protocols that included rapid whole-body magnetic resonance imaging, NIH scientists discovered “previously undetected cancers in 48.6% of pregnant people who had abnormal results for prenatal cell-free DNA (cfDNA) testing used to screen for chromosomal disorders in the fetus,” according to an NIH news release.

“They looked like healthy young women, and they reported themselves as being healthy,” Diana Bianchi, MD, head of the Prenatal Genomics and Therapy Section for the Medical Genetics Branch at the NIH’s National Human Genetics Research Institute, and senior author of the government study, told the Associated Press (AP).

While cfDNA tests are not diagnostic, pathologists and clinical laboratory managers involved in genetic testing are likely familiar with them. The blood tests are used by expectant mothers to assess risk of a fetus with an abnormal number of chromosomes that could suggest disorders such as Down Syndrome, according to ARUP Laboratories.

Unexpected results from tests draw attention. This one seems to have a chance to get more traction with labs because the results point to a prenatal test having some success predicting cancer, even if incidentally.

The researchers published their findings in the New England Journal of Medicine (NEJM) titled, “Prenatal cfDNA Sequencing and Incidental Detection of Maternal Cancer.”

“[The study participants] and their care providers need to take the results seriously and have additional testing because in that population there is a 48% risk of cancer,” Diana Bianchi, MD, senior author of the NIH study, told the AP. (Photo copyright: National Institutes of Health.)

Cancer Found in about Half of Those with Abnormal cfDNA

The NIH researchers started a long-term study, called IDENTIFY, to learn more about abnormal cfDNA results that could suggest cancer. Study participants must be:

  • Pregnant or postpartum with no known cancer.
  • Recipients of “unusual clinical cfDNA-sequencing results or results that are non-reportable (fetal aneuploidy status could not be assessed) from one of 12 different commercial laboratories,” they wrote in NEJM.

For the study’s initial cohort of 107 participants, researchers repeated cfDNA sequencing testing and coordinated standard medical diagnostic tests (such as Pap smears) and whole-body magnetic resonance imaging.

As reported by Ars Technica:

  • 52 women (48.6%) were found to have “hidden cancers.”
  • 32 had blood cancers.
  • 20 had solid tumors in the breast, bile duct, colon, pancreas, lung, kidney, bone, and adrenal gland.
  • 13 of the 20 with solid tumors were able to access “potentially curative treatments.”
  • 55 women did not have cancer and may have obtained an unreliable cfDNA result.

“In this study, 48.6% of participants who received unusual or nonreportable clinical cfDNA-sequencing results had an occult cancer (cancer of unknown primary).

“Further study of DNA-sequencing patterns that are suggestive of occult cancer during prenatal screening is warranted,” the researchers wrote in NEJM.

Follow-Up Testing Needed

Cancers found in the study participants “included colorectal, breast, lung and pancreatic cancers, as well as lymphoma, cholangiocarcinoma and renal carcinoma. The screening test analyzes placental DNA fragments circulating in the maternal bloodstream to identify an extra chromosome or to determine the baby’s sex,” according to the NIH news release.

Bianchi told AP the study results also pointed to a “very chaotic” pattern in DNA-sequencing of women with cancer, and that more research is needed to find out who should be screened for cancer.

Clinical laboratories and pathologists who analyze cfDNA tests could take a leadership role in assessing current standards for the tests, determining how suspicious results are reported, and suggesting needed changes. 

—Donna Marie Pocius

UC San Francisco Scientists Discover Antibodies That Appear in Multiple Sclerosis Patients Years before Symptoms Occur

Findings may lead to new clinical laboratory biomarkers for predicting risk of developing MS and other autoimmune diseases

Scientists continue to find new clinical laboratory biomarkers to detect—and even predict risk of developing—specific chronic diseases. Now, in a recent study conducted at the University of California San Francisco (UCSF), researchers identified antibodies that develop in about 10% of Multiple Sclerosis (MS) patients’ years before the onset of symptoms. The researchers reported that of those who have these antibodies, 100% develop MS. Thus, this discovery could lead to new blood tests for screening MS patients and new ways to treat it and other autoimmune diseases as well.

The UCSF researchers determined that, “in about 10% [of] cases of multiple sclerosis, the body begins producing a distinctive set of antibodies against its own proteins years before symptoms emerge,” Yahoo Life reported, adding that “when [the patients] are tested at the time of their first disease flare, the antibodies show up in both their blood and cerebrospinal fluid.”

That MS is so challenging to diagnose in the first place makes this discovery even more profound. And knowing that 100% of a subset of MS patients who have these antibodies will develop MS makes the UCSF study findings quite important.

“This could be a useful tool to help triage and diagnose patients with otherwise nonspecific neurological symptoms and prioritize them for closer surveillance and possible treatment,” Colin Zamecnik, PhD, scientist and research fellow at UCSF, told Yahoo Life.

The researchers published their findings in the journal Nature Medicine titled, “An Autoantibody Signature Predictive for Multiple Sclerosis.”

“From the largest cohort of blood samples on Earth, we obtained blood samples from MS patients years before their symptoms began and profiled antibodies against self-autoantibodies that are associated with multiple sclerosis diagnosis,” Colin Zamecnik, PhD (above), scientist and research fellow at UCSF, told Yahoo Life. “We found the first molecular marker of MS that appears up to five years before diagnosis in their blood.” These findings could lead to new clinical laboratory tests that determine risk for developing MS and other autoimmune diseases. (Photo copyright: LinkedIn.)

UCSF Study Details

According to the MS International Foundation Atlas of MS, there are currently about 2.9 million people living with MS worldwide, with about one million of them in the US. The disease is typically diagnosed in individuals 20 to 50 years old, mostly targeting those of Northern European descent, Yahoo Life reported.

To complete their study, the UCSF scientists used the Department of Defense Serum Repository (DoDSR), which is comprised of more than 10 million individuals, the researchers noted in their Nature Medicine paper.

From that group, the scientists identified 250 individuals who developed MS, spanning a period of five years prior to showing symptoms through one year after their symptoms first appeared, Medical News Today reported. These people were compared to 250 other individuals in the DoDSR who have no MS diagnosis but who all had similar serum collection dates, ages, race and ethnicities, and sex.

“The researchers validated the serum results against serum and cerebrospinal fluid results from an incident MS cohort at the University of California, San Francisco (ORIGINS) that enrolled patients at clinical onset. They used data from 103 patients from the UCSF ORIGINS study,” according to Medical News Today. “They carried out molecular profiling of autoantibodies and neuronal damage in samples from the 500 participants, measuring serum neurofilament light chain measurement (sNfL) to detect damage to nerve cells.

“The researchers tested the antibody patterns of both MS and control participants using whole-human proteome seroreactivity which can detect autoimmune reactions in the serum and CSF,” Medical News Today noted.

Many who developed MS had an immunogenicity cluster (IC) of antibodies that “remained stable over time” and was not found in the control samples. The higher levels of sNfL in those with MS were discovered years prior to the first flare up, “indicating that damage to nerve cells begins a long time before symptom onset,” Medical News Today added.

“This signature is a starting point for further immunological characterization of this MS patient subset and may be clinically useful as an antigen-specific biomarker for high-risk patients with clinically or radiologically isolated neuroinflammatory syndromes,” the UCSF scientists wrote in Nature Medicine.

“We believe it’s possible that these patients are exhibiting cross reactive response to a prior infection, which agrees with much current work in the literature around multiple sclerosis disease progression,” Zamecnik told Yahoo Life.

It “validates and adds to prior evidence of neuro-axonal injury occurring in patients during the MS preclinical phase,” the researchers told Medical News Today.

Implications of UCSF’s Study

UCSF’s discovery is a prime example of technology that could soon work its way into clinical use once additional studies and research are done to support the findings.

The researchers believe their research could lead to a simple blood test for detecting MS years in advance and discussed how this could “give birth to new treatments and disease management opportunities,” Neuroscience News reported.

Current MS diagnosis requires a battery of tests, such as lumbar punctures for testing cerebrospinal fluid, magnetic resonance imaging (MRI) scans of the spinal cord and brain, and “tests to measure speed and accuracy of nervous system responses,” Medical News Today noted.

“Given its specificity for MS both before and after diagnosis, an autoantibody serology test against the MS1c peptides could be implemented in a surveillance setting for patients with high probability of developing MS, or crucially at a first clinically isolated neurologic episode,” the UCSF researchers told Medical News Today.

“It would also be interesting to see whether these antibodies could be a marker of disease severity and explain some of the MS course heterogeneity,” epidemiologist Marianna Cortese, MD, PhD, senior research scientist at Harvard T.H. Chan School of Public Health, told Medical News Today.

The UCSF discovery is another example of nascent technology that could work its way into clinical use after more research and studies. Microbiologists, clinical laboratories, and physicians tasked with diagnosing MS and other autoimmune diseases should find the novel biomarkers the researchers identified most interesting, as well as what changed with science and technology that enabled researchers to identify these biomarkers for development.

—Kristin Althea O’Connor

Related Information:

An Autoantibody Signature Predictive for Multiple Sclerosis

Signs of Multiple Sclerosis Can Be Detected in Blood 5 Years before Symptoms Appear, New Study Finds. Here’s Why This Breakthrough Is Important.

Signs of MS May Be Visible in Blood Years Before First Flare-Up of Symptoms

Blood Test Predicts Multiple Sclerosis Years Before Symptoms Appear

New Research Suggests Clinical Laboratory Blood Tests Could Fill A Void in Alzheimer’s Disease Diagnoses

Studies presented at the Alzheimer’s Association International Conference point to the p-tau217 protein as an especially useful biomarker

Researchers disclosed a potentially useful biomarker for Alzheimer’s Disease at a major conference this summer. The good news for clinical laboratories is that the biomarker is found in blood. If further research confirms these early findings, medical laboratories could one day have a diagnostic test for this condition.

That possibility emerged from the Alzheimer’s Association International Conference (AAIC), which was held online July 27-31. Researchers presented findings from multiple studies that suggested blood/plasma levels of a protein known as phospho-tau217 (p-tau217) can indicate brain anomalies associated with Alzheimer’s.“Changes in brain proteins amyloid and tau, and their formation into clumps known as plaques and tangles, respectively, are defining physical features of Alzheimer’s disease in the brain,” states an AAIC press release. “Buildup of tau tangles is thought to correlate closely with cognitive decline. In these newly reported results, blood/plasma levels of p-tau217, one of the forms of tau found in tangles, also seem to correlate closely with buildup of amyloid.”

At present, “there is no single diagnostic test that can determine if a person has Alzheimer’s disease,” the association states on its website. Clinicians will typically review a patient’s medical history and conduct tests to evaluate memory and other everyday thinking skills. That may help determine that an individual has dementia, but not necessarily that Alzheimer’s is the cause.

“Currently, the brain changes that occur before Alzheimer’s dementia symptoms appear can only be reliably assessed by positron-emission tomography (PET) scans, and from measuring amyloid and tau proteins in [cerebrospinal] fluid (CSF),” the association states. “These methods are expensive and invasive. And, too often, they are unavailable because they are not covered by insurance or difficult to access, or both.”

In the AAIC press release, Alzheimer’s Association Chief Science Officer Maria C. Carrillo, PhD, said that a clinical laboratory blood test “would fill an urgent need for simple, inexpensive, non-invasive and easily available diagnostic tools for Alzheimer’s.

“New testing technologies could also support drug development in many ways,” she added. “For example, by helping identify the right people for clinical trials, and by tracking the impact of therapies being tested. The possibility of early detection and being able to intervene with a treatment before significant damage to the brain from Alzheimer’s disease would be game changing for individuals, families, and our healthcare system.”

However, she cautioned, “these are early results, and we do not yet know how long it will be until these tests are available for clinical use. They need to be tested in long-term, large-scale studies, such as Alzheimer’s clinical trials.”

Eli Lilly Clinical Laboratory Alzheimer’s Test

In one study presented at the conference, titled, “Discriminative Accuracy of Plasma Phospho-tau217 for Alzheimer Disease vs Other Neurodegenerative Disorders,” researchers evaluated an experimental p-tau217 medical laboratory test developed by Eli Lilly. They published their research in JAMA Network.

The study, led by Oskar Hansson, MD, of Lund University in Sweden, included 1,402 participants. About half of these were enrolled in BioFINDER-2, an ongoing dementia study in Sweden. In this group, researchers were most interested in the test’s ability to distinguish Alzheimer’s from other neurodegenerative disorders that cause dementia.

Diagnostic accuracy was between 89% and 98%, the researchers reported, which was similar to the performance of PET imaging and CSF tests. P-tau217 was more accurate than magnetic resonance imaging (MRI) as well as other biomarkers, such as p-tau181.

Oskar-Hansson-PhD-Lund-University-400w@72ppi
“Today the majority of individuals with Alzheimer’s disease around the world do not get a timely diagnosis, which results in suboptimal symptomatic treatment and care,” Oskar Hansson, MD, said in an Eli Lilly news release. “With rising prevalence of Alzheimer’s disease, more patients will be evaluated in primary care and other clinics where CSF and PET biomarkers are not available. Blood-based biomarkers, like plasma p-tau217, together with digital tools for checking memory performance, such as smartphone-based apps, can considerably improve the diagnostic work-up of Alzheimer’s disease patients in such clinics.” (Photo copyright: Alzheimer’s Fund.)

Another cohort consisted of 81 participants in the Brain and Body Donation Program at Banner Sun Health Research Institute in Sun City, Ariz. In this program, elderly volunteers submit to periodic clinical assessments and agree to donate their organs and tissue for study after they die.

Here, the researchers’ primary goal was to determine the test’s ability to distinguish between individuals with and without Alzheimer’s. Researchers ran the p-tau217 test on plasma samples collected within 2.9 years of death and compared the results to postmortem examinations of the brain tissue. Accuracy was 89% in individuals with amyloid plaques and tangles, and 98% in individuals with plaques and more extensive tangles.

The third cohort consisted of 622 members of a large extended family in Colombia whose members share a genetic mutation that makes them susceptible to early-onset Alzheimer’s, The New York Times reported. Among the members, 365 were carriers of the mutation. In this group, levels of plasma p-tau217 increased by age, and “a significant difference from noncarriers was seen at age 24.9 years,” the researchers wrote in Jama Network. That’s about 20 years before the median age when mild cognitive impairment typically begins to appear in carriers.

Other Alzheimer Biomarker Studies Presented at AAIC

Suzanne Schindler, MD, PhD, a neurologist and instructor in the Department of Neurology at the Washington University School of Medicine (WUSM) in St. Louis, presented results of an Alzheimer’s Disease (AD) study that used mass spectrometry to analyze amyloid and p-tau variants in blood samples collected from participants. The researchers compared these with CSF and PET results and found that some of the of p-tau isoforms, especially p-tau217, had a strong concordance.

“These findings indicate that blood plasma Aβ and p-tau measures are highly precise biomarkers of brain amyloidosis, tauopathy, and can identify stages of clinical and preclinical AD,” stated an AAIC press release on the studies.

The WUSM researches launched the effort to develop and validate Alzheimer’s blood biomarkers called the Study to Evaluate Amyloid in Blood and Imaging Related to Dementia (SEABIRD) in April 2019. It runs through August 2023 and will seek to enroll more than 1,100 participants in the St. Louis area.

Another study presented at the conference compared the performance of p-tau217 and p-tau181 in distinguishing between Alzheimer’s and Frontotemporal Lobar Degeneration (FTLD), another condition that causes dementia. Study author Elisabeth Thijssen, MSc, of the UC San Francisco Memory and Aging Center reported that both biomarkers could be useful in differential diagnosis, but that p-tau217 was “potentially superior” for predicting a tau positive PET scan result.

For decades, physicians have wanted a diagnostic test for Alzheimer’s Disease that could identify this condition early in its development. This would allow the patient and the family to make important decisions before the onset of severe symptoms. Such a clinical laboratory test would be ordered frequently and thus would be a new source of revenue for medical laboratories.

—Stephen Beale

Related Information:

How is Alzheimer’s Disease Diagnosed?

Alzheimer’s Diagnosis and Treatment

Diagnosing Alzheimer’s: How Alzheimer’s is Diagnosed

New Alzheimer’s Disease Blood Test Could Enable Early Diagnosis and Advance Understanding of How Disease Impacts Those Living with It

Lilly’s p-tau217 Blood Test Shows High Accuracy in Diagnosis of Alzheimer’s Disease in Data Published in JAMA

P-Tau217 May Detect Alzheimer Disease, Brain Amyloidosis, Tauopathy

New Blood Test Shows Great Promise in The Diagnosis of Alzheimer’s Disease

‘Amazing, Isn’t It?’ Long-Sought Blood Test for Alzheimer’s in Reach

Scientists Get Closer to Blood Test for Alzheimer’s Disease

Discriminative Accuracy of Plasma Phospho-tau217 for Alzheimer Disease vs Other Neurodegenerative Disorders

Clinical Laboratory Test for Alzheimer’s Disease Gets Ever Closer to Reality

Scientists worldwide engaged in research to develop a biomarker for dementia are predicting success, though some say additional research will be needed

Could a blood test for Alzheimer’s disease soon be on clinical laboratory test menus nationwide? Perhaps so. A recent Associated Press (AP) article that was picked up by NBC News and other healthcare publications reported that experimental test results presented during the Alzheimer’s Association International Conference (AAIC) in July suggest the Holy Grail of dementia tests—one where the specimen can be collected in a doctor’s office during a routine screening exam—may be close at hand.

The AP story noted that “half a dozen research groups gave new results on various experimental tests, including one that seems 88% accurate at indicating Alzheimer’s risk.” And Richard Hodes, MD, Director of the National Institute on Aging, told AP, “In the past year, we’ve seen a dramatic acceleration in progress [on Alzheimer’s tests]. This has happened at a pace that is far faster than any of us would have expected.”

This could be a boon for medical laboratories seeking way to contribute more value to patient care. Especially among Alzheimer’s patients, who account for as many as 70% of all dementia cases.

Plasma Biomarker for Predicting Alzheimer’s

One of the experimental blood tests presented at the AAIC involved a 2018 study into “the potential clinical utility of plasma biomarkers in predicting brain amyloid-β burden at an individual level. These plasma biomarkers also have cost-benefit and scalability advantages over current techniques, potentially enabling broader clinical access and efficient population screening,” the researchers stated an article they published in Nature.

Dark Daily reported on this study in “Researchers in Two Countries Develop Blood Tests That Detect Alzheimer’s Decades Before Symptoms Appear; Could Eventually Give Clinical Laboratories a Diagnostic Tool,” June 4, 2018. The test “measures abnormal versions of the protein [amyloid beta] that forms the plaques in the brain that are the hallmark of Alzheimer’s,” the AP story reported.

AP also reported that Japanese scientists at the AAIC presented results of a validation test conducted on 201 people who had either Alzheimer’s, other types of dementia, or little or no symptoms. They found that the test “correctly identified 92% of people who had Alzheimer’s and correctly ruled out 85% who did not have it, for an overall accuracy of 88%.”

Akinori Nakamura, MD, PhD, of the National Center for Geriatrics and Gerontology in Obu, Japan, was a member of the research team and first author of the research paper. He told the AP that the test results “closely matched those from the top tests used now—three types of brain scans and a mental assessment exam.”

Eric McDade, DO (above), Associate Professor of Neurology at Washington University in St. Louis, told Neurology Today, “The results reported here provide a relatively high level of confidence given that this is a relatively well characterized population with an amyloid PET scan to provide confirmation of a significant level of amyloid plaque burden in the brain.” Could this level of physician confidence lead to a clinical laboratory test based on the plasma biomarker? (Photo copyright: Washington University.)

Koichi Tanaka is a Japanese engineer who won the Nobel prize winner for chemistry. He heads the Koichi Tanaka Research Lab at Shimadzu Corp. (OTCMKTS:SHMZF) in Kyoto, Japan, and was on the team that developed the Amyloid beta biomarker test that was presented at AAIC. He told Bloomberg, “Our finding overturned the common belief that it wouldn’t be possible to estimate amyloid accumulation in the brain from blood. We’re now being chased by others, and the competition is intensifying.”

But Tanaka cautions that the test needs further study before it is ready for clinical use, and that for now “it belongs in the hands of drug developers and research laboratories,” Bloomberg reported.

Other Studies into Developing an Alzheimer’s Biomarker

Alzheimer’s is usually diagnosed after symptoms appear, such as memory loss. To arrive at their diagnoses, doctors often rely on medical history, brain imaging (MRI, CT), PET, and measurement of amyloid in spinal fluid.  

An article published on Alzforum, a website and news service dedicated to the research and treatment for Alzheimer’s and other related disorders, noted a study by King’s College London researchers who, using mass spectrometry, “found a panel of biomarkers that predicted with almost 90% accuracy whether cognitively normal people had a positive amyloid scan.”

Nicholas Ashton, PhD, neuroscientist and Wallenberg Postdoctoral Fellow at University of Gothenburg in Sweden, and first author of the King’s College study, explained that “Amyloid-burden and neurofilament light polypeptide (NFL) peptides were important in predicting Alzheimer’s, but alone they weren’t as predictable as when we combined them with novel proteins related to amyloid PET.”

The researchers published their study earlier this year in Science Advances. “Using an unbiased mass spectrometry approach, we have found and replicated with high accuracy, specificity, and sensitivity a plasma protein classifier reflecting amyloid-beta burden in a cognitively unimpaired cohort,” the researchers wrote.

Meanwhile, researchers at Washington University School of Medicine St. Louis, along with the German Center for Neurodegenerative Diseases, a member of the Helmholtz Association, stated in a news release that a blood test they developed works by detecting leaks of NFL before the onset of symptoms. When the protein is found in cerebrospinal fluid, it could be a sign that Alzheimer’s may develop, as well as point to other neurodegenerative conditions such as multiple sclerosis, brain injury, or stroke, the researchers stated.  

“This is something that would be easy to incorporate into a screening test in a neurology clinic,” Brian Gordon, PhD, Assistant Professor of Radiology at Washington University’s Mallinckrodt Institute of Radiology, and an author of the study, stated in the news release.

These parallel studies into screening for Alzheimer’s by researchers worldwide are intriguing. The favorable results suggest that someday there may be a screen for Alzheimer’s using a clinical laboratory blood test.

With Alzheimer’s affecting nearly six million Americans of all ages, such an assay would enable clinical laboratories to help many people.

—Donna Marie Pocius

Related Information:

Scientists Close in On Blood Test for Alzheimer’s

Advances in the Global Search for Blood Markers for Alzheimer’s Disease and Other Dementias

A Blood Test Can Predict Dementia. Trouble Is, There’s No Cure

Plasma Biomarker for Amyloid Correlates with Alzheimer’s Progression, Study Finds

High Performance Plasma Amyloid-β Biomarkers for Alzheimer’s Disease

Panel Blood Markers Signals Amyloid in Brain

A Plasma Protein Classifier for Predicting Amyloid Burden for Preclinical Alzheimer’s Disease

Blood Test Detects Alzheimer’s Damage Before Symptoms; Test Also May Identify Neurodegeneration in Other Brain Diseases

Blood-Brain Barrier Breakdown is an Early Biomarker of Human Cognitive Dysfunction

Researchers in Two Countries Develop Blood Tests That Detect Alzheimer’s Decades Before Symptoms Appear Could Eventually Give Clinical Laboratories A Diagnostic Tool

UK Study Finds Late Diagnosis of Prostate Cancer a Worrisome Trend for UK’s National Health Service

Pathologists around the world will be interested to learn that, for the first time in the UK, prostate cancer has surpassed breast cancer in numbers of deaths annually and nearly 40% of prostate cancer diagnoses occur in stages three and four

Early detection of prostate cancer, and the ability to identify its more aggressive forms, are important goals for every nation’s health system. However, a new study in the United Kingdom (UK) will be of interest to all anatomic pathologists handling prostate biopsies. Researchers determined that late diagnosis of prostate cancer is an issue that should be addressed by healthcare policymakers in the UK.

In 2015, deaths due to prostate cancer surpassed those of breast cancer in the UK. According to data from Cancer Research UK, this trend continued into 2016 with 11,631 deaths from prostate cancer and 11,538 deaths from breast cancer. The trend continued even though breast cancer saw roughly 8,000 more new cases in 2015, according to the same data.

Now, a report from Orchid—a UK male cancer charity—highlights a trend that should interest medical laboratories and histopathology (anatomic pathology in the US) groups that analyze prostate cancer samples. They found that 37% of UK prostate cancer cases involved diagnoses in stages three or four.

Late-Stage Diagnosis of Prostate Cancer: The US and UK Compared

“With prostate cancer due to be the most prevalent cancer in the UK within the next 12 years, we are facing a potential crisis in terms of diagnostics, treatment, and patient care,” stated Rebecca Porta, Chief Executive of Orchid, in a press release. “Urgent action needs to be taken now if we are to be in a position to deliver world class outcomes for prostate cancer patients and their families in the future.”

Orchid Chief Executive Rebecca Porta (far right) and her team are shown above receiving a check from the Industrial Agents Society (AIS) to help fund the charity’s research into male specific cancers, such as prostate cancer. (Photo copyright: AIS.)

The latest data from the Centers for Disease Control and Prevention (CDC) on prostate cancer and mortality rates in the US shows an interesting picture. In 2014, 172,258 men received a prostate cancer diagnosis. However, deaths from prostate cancer were at 28,343.

According to Statista, an international statistics portal, the UK is home to more than 32.3-million males. And, Statista’s data shows the US is home to 159.1-million males. This implies that despite the US having nearly five times the number of males, the number of prostate cancer deaths/year in the UK is significantly higher in relation to population size.

Cancer Research UK notes that despite decreasing by 13% in the last decade, prostate cancer mortality rates are still 21% higher than in the 1970s.

Awareness and Early Detection Key Components in the Fight Against Cancer

A study published in BMC Public Health offers one possible explanation for this disparity.

“When compared to analogous countries in Europe, Canada, and Australia, older adults in the UK have markedly different survival outcomes,” noted lead author of the study Sara Macdonald, PhD, Lecturer in Primary Care at the Institute of Health and Wellbeing at the University of Glasgow, Scotland.

“Poorer outcomes in the UK are at least in part attributable to later stage diagnoses,” she explained. “Older adults should be vigilant about cancer. Yet, this is not reflected in the news media coverage of cancer risk. Taken together, invisibility, inaccuracy, and information overload build a skewed picture that cancer is a disease which affects younger people.”

While treatment options have improved in the past decade, early detection is a key part of successful treatment—especially as prostate cancer has both aggressive and slow variants. Effective timely health screening also is of critical concern.

In the US, however, prolific prostatic-specific antigen (PSA) testing and other screenings for chronic disease—particularly within the elderly population—is under increased scrutiny and criticism, which Dark Daily reported on in April. (See, “Kaiser Health News Labels Routine Clinical Laboratory Testing and Other Screening of Elderly Patients an ‘Epidemic’ in US,” April 11, 2018.)

New Tools to Detect Prostate Cancer

Faster diagnosis and the ability to detect whether a prostate cancer is slow or aggressive could help to shift these numbers around the world.

According to BBC News, the NHS hopes to reduce diagnosis times and make the screening process less invasive by using magnetic resonance imaging (MRI). Hashim Ahmed, PhD, Chairman of Urology, Imperial College London, told BBC News, “Fast access to high-quality prostate MRI allows many men to avoid invasive biopsies as well as allowing precision biopsy in those men requiring it to find high-risk tumors much earlier.”

A team from the University of Dundee is trialing a shear wave elastography imaging (SWEI) process to detect prostate tumors as well. Speaking with The Guardian, team leader and Chair of the School of Medicine at The University of Dundee, Dr. Ghulam Nabi, noted, “We have been able to show a stark difference in results between our technology and existing techniques such as MRI. The technique has picked up cancers which MRI did not reveal. We can now see with much greater accuracy what tissue is cancerous, where it is, and what level of treatment it needs. This is a significant step forward.”

Should these tools prove successful, they might help to reverse current trends in the UK and offer greater insight and options for the histopathology groups there, as well as the medical laboratories, oncologists, and other medical specialists helping to treat cancer.

Until then, raising awareness and streamlining both detection and treatment protocols will remain a critical concern, not just in the UK, but around the world as the human population continues to age.

—Jon Stone

Related Information:

Prostate Cancer: Four in 10 Cases Diagnosed Late, Charity Says

New Report Reveals 4 in 10 Prostate Cancer Cases Are Diagnosed Late and an Impending Crisis in Prostate Cancer Provision

Prostate Cancer Deaths Overtake Those from Breast Cancer

Cutting Prostate Cancer Diagnosis Times

Prostate Cancer on the Rise; Time to Revisit Guidelines?

More High-Risk Prostate Cancer Now in the US than Before

Prostate Cancer Breakthrough as UK Team Develops More Accurate Test

Mass Media and Risk Factors for Cancer: The Under-Representation of Age

Kaiser Health News Labels Routine Clinical Laboratory Testing and Other Screening of Elderly Patients an ‘Epidemic’ in US

Genetic Fingerprint Helps Researchers Identify Aggressive Prostate Cancer from Non-aggressive Types and Determine If Treatment Will Be Effective

;