News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

World Economic Forum Publishes Updated List of 12 Breakthroughs in Fight against Cancer That Includes Innovative Clinical Laboratory Test (Part 2)

These advances in the battle against cancer could lead to new clinical laboratory screening tests and other diagnostics for early detection of the disease

As Dark Daily reported in part one of this story, the World Economic Forum (WEF) has identified 12 new breakthroughs in the fight against cancer that will be of interest to pathologists and clinical laboratory managers.

As we noted in part one, the WEF originally announced these breakthroughs in an article first published in May 2022 and then updated in October 2024. According to the WEF, the World Health Organization (WHO) identified cancer as a “leading cause of death globally” that “kills around 10 million people a year.”

The WEF is a non-profit organization base in Switzerland that, according to its website, “engages political, business, academic, civil society and other leaders of society to shape global, regional and industry agendas.”

Monday’s ebrief focused on four advances identified by WEF that should be of particular interest to clinical laboratory leaders. Here are the others.

Personalized Cancer Vaccines in England

The National Health Service (NHS) in England, in collaboration with the German pharmaceutical company BioNTech, has launched a program to facilitate development of personalized cancer vaccines. The NHS Cancer Vaccine Launch Pad will seek to match cancer patients with clinical trials for the vaccines. The Launch Pad will be based on messenger ribonucleic acid (mRNA) technology, which is the same technology used in many COVID-19 vaccines.

The BBC reported that these cancer vaccines are treatments, not a form of prevention. BioNTech receives a sample of a patient’s tumor and then formulates a vaccine that exposes the cancer cells to the patient’s immune system. Each vaccine is tailored for the specific mutations in the patient’s tumor.

“I think this is a new era. The science behind this makes sense,” medical oncologist Victoria Kunene, MBChB, MRCP, MSc (above), trial principal investigator from Queen Elizabeth Hospital Birmingham (QEHB) involved in an NHS program to develop personalized cancer vaccines, told the BBC. “My hope is this will become the standard of care. It makes sense that we can have something that can help patients reduce their risk of cancer recurrence.” These clinical trials could lead to new clinical laboratory screening tests for cancer vaccines. (Photo copyright: Queen Elizabeth Hospital Birmingham.)

Seven-Minute Cancer Treatment Injection

NHS England has also begun treating eligible cancer patients with under-the-skin injections of atezolizumab, an immunotherapy marketed under the brand name Tecentriq, Reuters reported. The drug is usually delivered intravenously, a procedure that can take 30 to 60 minutes. Injecting the drug takes just seven minutes, Reuters noted, saving time for patients and cancer teams.

The drug is designed to stimulate the patient’s immune system to attack cancer cells, including breast, lung, liver, and bladder cancers.

AI Advances in India

One WEF component—the Center for the Fourth Industrial Revolution (C4IR)—aims to harness emerging technologies such as artificial intelligence (AI) and virtual reality. In India, the organization says the Center is seeking to accelerate use of AI-based risk profiling to “help screen for common cancers like breast cancer, leading to early diagnosis.”

Researchers are also exploring the use of AI to “analyze X-rays to identify cancers in places where imaging experts might not be available.”

Using AI to Assess Lung Cancer Risk

Early-stage lung cancer is “notoriously hard to detect,” WEF observed. To help meet this challenge, researchers at Massachusetts Institute of Technology (MIT) developed an AI model known as Sybil that analyzes low-dose computed tomography scans to predict a patient’s risk of getting the disease within the next six years. It does so without a radiologist’s intervention, according to a press release.

The researchers tested the system on scans obtained from the National Lung Cancer Screening Trial, Mass General Hospital (MGH), and Chang Gung Memorial Hospital. Sybil achieved C-index scores ranging from 0.75 to 0.81, they reported. “Models achieving a C-index score over 0.7 are considered good and over 0.8 is considered strong,” the press release notes.

The researchers published their findings in the Journal of Clinical Oncology.

Using Genomics to Identify Cancer-Causing Mutations

In what has been described as the “largest study of whole genome sequencing data,” researchers at the University of Cambridge in the UK announced they have discovered a “treasure trove” of information about possible causes of cancer.

Using data from England’s 100,000 Genomes Project, the researchers analyzed the whole genome sequences of 12,000 NHS cancer patients.

This allowed them “to detect patterns in the DNA of cancer, known as ‘mutational signatures,’ that provide clues about whether a patient has had a past exposure to environmental causes of cancer such as smoking or UV light, or has internal, cellular malfunctions,” according to a press release.

The researchers also identified 58 new mutational signatures, “suggesting that there are additional causes of cancer that we don’t yet fully understand,” the press release states.

The study appeared in April 2022 in the journal Science.

Validation of CAR-T-Cell Therapy

CAR-T-cell therapy “involves removing and genetically altering immune cells, called T cells, from cancer patients,” WEF explained. “The altered cells then produce proteins called chimeric antigen receptors (CARs), which can recognize and destroy cancer cells.”

The therapy appeared to receive validation in 2022 when researchers at the University of Pennsylvania published an article in the journal Nature noting that two early recipients of the treatment were still in remission after 12 years.

However, the US Food and Drug Administration (FDA) announced in 2023 that it was investigating reports of T-cell malignancies, including lymphoma, in patients who had received the treatment.

WEF observed that “the jury is still out as to whether the therapy is to blame but, as a precaution, the drug packaging now carries a warning.”

Breast Cancer Drug Repurposed for Prevention

England’s NHS announced in 2023 that anastrozole, a breast cancer drug, will be available to post-menopausal women to help reduce their risk of developing the disease.

“Around 289,000 women at moderate or high risk of breast cancer could be eligible for the drug, and while not all will choose to take it, it is estimated that if 25% do, around 2,000 cases of breast cancer could potentially be prevented in England, while saving the NHS around £15 million in treatment costs,” the NHS stated.

The tablet, which is off patent, has been used for many years to treat breast cancer, the NHS added. Anastrozole blocks the body’s production of the enzyme aromatase, reducing levels of the hormone estrogen.

Big Advance in Treating Cervical Cancer

In October 2024, researchers announced results from a large clinical trial demonstrating that a new approach to treating cervical cancer—one that uses currently available therapies—can reduce the risk of death by 40% and the risk of relapsing by 36%.

Patients are commonly treated with a combination of chemotherapy and radiotherapy called chemoradiotherapy (CRT), according to Cancer Research UK. But outcomes are improved dramatically by administering six weeks of induction therapy prior to CRT, the researchers reported.

“This is the biggest improvement in outcome in this disease in over 20 years,” said Mary McCormack, PhD, clinical oncologist at the University College London and lead investigator in the trial.

The scientists published their findings in The Lancet.

Pathologists and clinical lab managers will want to keep track of these 12 breakthrough advancements in the diagnosis and treatment of cancer highlighted by the WEF. They will likely lead to new screening tests for the disease and could save many lives.

—Stephen Beale

Related Information:

Thousands of Cancer Patients to Trial Personalized Vaccines

England to Rollout World-First Seven-Minute Cancer Treatment Jab

MIT Researchers Develop an AI Model That Can Detect Future Lung Cancer Risk

Largest Study of Whole Genome Sequencing Data Reveals New Clues to Causes of Cancer

Tens of Thousands of Women Set to Benefit from ‘Repurposed’ NHS Drug to Prevent Breast Cancer

Cervical Cancer Treatment Breakthrough Cuts Risk of Death By 40%

Dutch Patient with Longest COVID-19 Case of 612 Days Had More than 50 SARS-CoV-2 Mutations Before He Died

Study of the 50 Omicron variants could lead to new approaches to clinical laboratory testing and medical treatments for long COVID

Patients infected with SARS-CoV-2 can usually expect the COVID-19 illness to subside within a couple of weeks. However, one Dutch patient remained infected with the coronavirus for 612 days and fought more than 50 mutations (aka, variants) before dying late last year of complications due to pre-existing conditions. This extreme case has given doctors, virologists, microbiologists, and clinical laboratories new insights into how the SARS-CoV-2 virus mutates and may lead to new treatments for long COVID.

According to Scientific American, when the 72-year-old male patient was admitted to the Amsterdam University Medical Center (Amsterdam UMC) in 2022 with the Omicron variant of SARS-CoV-2, he was also found to have myelodysplastic syndrome (MDS) and myeloproliferative neoplasm (MPN) overlap syndromes. Thus, the patient was determined to be immunocompromised.

“This was complicated by the development of a post-transplant lymphoma for which he received rituximab [a monoclonal antibody medication used to treat certain autoimmune diseases and cancers] that depletes all available B-cells, including those that normally produce the SARS-CoV-2 directed antibodies,” according to a press release.

The medication the patient was taking for his pre-existing conditions may have contributed to his body being unable to produce antibodies in response to three shots of the Moderna mRNA COVID vaccine he received.

Magda Vergouwe, MD, PhD candidate at the Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC, who lead a study into the patient, theorized that some of the medications the patient was on for his pre-existing conditions could have destroyed healthy cells alongside the abnormal cancer-causing B cells the drugs were meant to target.

“This case underscores the risk of persistent SARS-CoV-2 infections in immunocompromised individuals,” the researchers said prior to presenting their report about the case at a meeting of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) in Barcelona, Spain, Time reported. “We emphasize the importance of continuing genomic surveillance of SARS-CoV-2 evolution in immunocompromised individuals with persistent infections.”

“Chronic infections and viral evolution [are] commonly described in [the] literature, and there are other cases of immunocompromised patients who have had [COVID] infections for hundreds of days,” Magda Vergouwe, MD, PhD candidate (above), Center for Experimental and Molecular Medicine at Amsterdam UMC, told Scientific American. “But this is unique due to the extreme length of the infection … and with the virus staying in his body for so long, it was possible for mutations to just develop and develop and develop.” Microbiologists, virologists, and clinical laboratories involved in testing patients with long COVID may want to follow this story. (Photo copyright: LinkedIn.)

Risks to Immunocompromised Patients

Pre-existing conditions increase the risk factor for COVID-19 infections. A 2021 study published in the Journal of the American Board of Family Medicine (JABFM) titled, “Prevalence of Pre-existing Conditions among Community Health Center Patients with COVID-19,” found that about 61% of that study’s test group had a pre-existing condition prior to the outbreak of the COVID-19 pandemic.

When the Dutch man was admitted to Amsterdam UMC with common and serious COVID-19 symptoms, such as shortness of breath, a cough, and low blood oxygen levels, he was prescribed sotrovimab (a monoclonal antibody) along with other COVID treatments.

About a month after being admitted his COVID-19 symptoms decreased, so he was first discharged to a rehab facility and then finally to his home. However, he continued to test positive for the coronavirus and developed other infections that may have been complicated by the persistent case of COVID-19.

The Amsterdam UMC doctors emphasized that the man ultimately succumbed to his pre-existing conditions and not necessarily COVID-19.

“It’s important to note that in the end he did not die from his COVID-19,” Vergouwe told Scientific American. “But he did keep it with him for a very long period of time until then, and this is why we made sure to sample [the virus in his body] as much as we could.”

One in Five Adults Develop Long COVID

Long COVID does not necessarily indicate an active infection. However, in as many as one in five US adults COVID symptoms persist after the acute phase of the infection is over, according to a study published recently in JAMA Network Open titled, “Epidemiologic Features of Recovery from SARS-CoV-2 Infection.”

“In this cohort study, more than one in five adults did not recover within three months of SARS-CoV-2 infection. Recovery within three months was less likely in women and those with pre-existing cardiovascular disease and more likely in those with COVID-19 vaccination or infection during the Omicron variant wave,” the JAMA authors wrote.

The origins of long COVID are not entirely clear, but according to the National Institutes of Health (NIH) it can develop when a patient is unable to sufficiently rest while battling off the initial virus. According to Vergouwe, the SARS-CoV-2 genome will always grow quicker when found in a patient with a compromised immune system.

Unique COVID-19 Mutations

More than 50 new mutations of the original Omicron variant were identified in the Dutch patient. According to Vergouwe, “while that number can sound shocking, mutations to the SARS-CoV-2 genome are expected to evolve more quickly in those who are immunocompromised (the average mutation rate of the virus is estimated to be two mutations per person per month),” Scientific American reported. “What does make these mutations unusual, she noted, is how their features differed vastly from mutations observed in other people with COVID. [Vergouwe] hypothesizes that the exceptional length of the individual’s infection, and his pre-existing conditions, allowed the virus to evolve extensively and uniquely.”

COVID-19 appears to be here to stay, and most clinical laboratory managers and pathologists understand why. As physicians continue to learn about the SARS-CoV-2 coronavirus, this is another example of how the knowledge about SARS-CoV-2 is growing as different individuals are infected with different variants of the virus.

—Ashley Croce

Related Information:

Longest-Ever COVID Infection Lasted More than 600 Days

COVID Patient’s Infection Lasts Record 613 Days—and Accumulated Over 50 Mutations

72-Year-Old Patient Had COVID for Record 613 Days, Accumulated over 50 Mutations from Virus Before It Killed Him

Prevalence of Preexisting Conditions among Community Health Center Patients with COVID-19: Implications for the Patient Protection and Affordable Care Act

The Risk Factors for Long COVID Have Finally Been Revealed

Prevalence of Pre-existing Conditions among Community Health Center Patients with COVID-19

Epidemiologic Features of Recovery from SARS-CoV-2 Infection

Genetic Testing of Wastewater Now Common in Detecting New Strains of COVID-19 and Other Infectious Diseases

Experimental Low-Cost Blood Test Can Detect Multiple Cancers, Researchers Say

Test uses a new ultrasensitive immunoassay to detect a known clinical laboratory diagnostic protein biomarker for many common cancers

Researchers from Mass General Brigham, the Dana-Farber Cancer Institute, Harvard University’s Wyss Institute and other institutions around the world have reportedly developed a simple clinical laboratory blood test that can detect a common protein biomarker associated with multiple types of cancer, including colorectal, gastroesophageal, and ovarian cancers.

Best of all, the researchers say the test could provide an inexpensive means of early diagnosis. This assay could also be used to monitor how well patients respond to cancer therapy, according to a news release.

The test, which is still in experimental stages, detects the presence of LINE-1 ORF1p, a protein expressed in many common cancers, as well as high-risk precursors, while having “negligible expression in normal tissues,” the researchers wrote in a paper they published in Cancer Discovery titled, “Ultrasensitive Detection of Circulating LINE-1 ORF1p as a Specific Multicancer Biomarker.”

The protein had previously been identified as a promising biomarker and is readily detectable in tumor tissue, they wrote. However, it is found in extremely low concentrations in blood plasma and is “well below detection limits of conventional clinical laboratory methods,” they noted.

To overcome that obstacle, they employed an ultra-sensitive immunoassay known as a Simoa (Single-Molecule Array), an immunoassay platform for measuring fluid biomarkers.

“We were shocked by how well this test worked in detecting the biomarker’s expression across cancer types,” said lead study author gastroenterologist Martin Taylor, MD, PhD, Instructor in Pathology, Massachusetts General Hospital and Harvard Medical School, in the press release. “It’s created more questions for us to explore and sparked interest among collaborators across many institutions.”

Kathleen Burns, MD, PhD

“We’ve known since the 1980s that transposable elements were active in some cancers, and nearly 10 years ago we reported that ORF1p was a pervasive cancer biomarker, but, until now, we haven’t had the ability to detect it in blood tests,” said pathologist and study co-author Kathleen Burns, MD, PhD (above), Chair of the Department of Pathology at Dana-Farber Cancer Institute and a Professor of Pathology at Harvard Medical School, in a press release. “Having a technology capable of detecting ORF1p in blood opens so many possibilities for clinical applications.” Clinical laboratories may soon have a new blood test to detect multiple types of cancer. (Photo copyright: Dana-Farber Cancer Institute.)

Simoa’s Advantages

In their press release, the researchers described ORF1p as “a hallmark of many cancers, particularly p53-deficient epithelial cancers,” a category that includes lung, breast, prostate, uterine, pancreatic, and head and neck cancers in addition to the cancers noted above.

“Pervasive expression of ORF1p in carcinomas, and the lack of expression in normal tissues, makes ORF1p unlike other protein biomarkers which have normal expression levels,” Taylor said in the press release. “This unique biology makes it highly specific.”

Simoa was developed at the laboratory of study co-author David R. Walt, PhD, the Hansjörg Wyss Professor of Bioinspired Engineering at Harvard Medical School, and Professor of Pathology at Harvard Medical School and Brigham and Women’s Hospital.

The Simoa technology “enables 100- to 1,000-fold improvements in sensitivity over conventional enzyme-linked immunosorbent assay (ELISA) techniques, thus opening the window to measuring proteins at concentrations that have never been detected before in various biological fluids such as plasma or saliva,” according to the Walt Lab website.

Simoa assays take less than two hours to run and require less than $3 in consumables. They are “simple to perform, scalable, and have clinical-grade coefficients of variation,” the researchers wrote.

Study Results

Using the first generation of the ORF1p Simoa assay, the researchers tested blood samples of patients with a variety of cancers along with 406 individuals, regarded as healthy, who served as controls. The test proved to be most effective among patients with colorectal and ovarian cancer, finding detectable levels of ORF1p in 58% of former and 71% of the latter. Detectable levels were found in patients with advanced-stage as well as early-stage disease, the researchers wrote in Cancer Discovery.

Among the 406 healthy controls, the test found detectable levels of ORF1p in only five. However, the control with the highest detectable levels, regarded as healthy when donating blood, “was six months later found to have prostate cancer and 19 months later found to have lymphoma,” the researchers wrote.

They later reengineered the Simoa assay to increase its sensitivity, resulting in improved detection of the protein in blood samples from patients with colorectal, gastroesophageal, ovarian, uterine, and breast cancers.

The researchers also employed the test on samples from 19 patients with gastroesophageal cancer to gauge its utility for monitoring therapeutic response. Although this was a small sample, they found that among 13 patients who had responded to therapy, “circulating ORF1p dropped to undetectable levels at follow-up sampling.”

“More Work to Be Done”

The Simoa assay has limitations, the researchers acknowledged. It doesn’t identify the location of cancers, and it “isn’t successful in identifying all cancers and their subtypes,” the press release stated, adding that the test will likely be used in conjunction with other early-detection approaches. The researchers also said they want to gauge the test’s accuracy in larger cohorts.

“The test is very specific, but it doesn’t tell us enough information to be used in a vacuum,” Walt said in the news release. “It’s exciting to see the early success of this ultrasensitive assessment tool, but there is more work to be done.”

More studies will be needed to valid these findings. That this promising new multi-cancer immunoassay is based on a clinical laboratory blood sample means its less invasive and less painful for patients. It’s a good example of an assay that takes a proteomic approach looking for protein cancer biomarkers rather than the genetic approach looking for molecular DNA/RNA biomarkers of cancer.

—Stephen Beale

Related Information:

Ultrasensitive Blood Test Detects ‘Pan-Cancer’ Biomarker

New Blood Test Could Offer Earlier Detection of Common Deadly Cancers

Ultrasensitive Detection of Circulating LINE-1 ORF1p as a Specific Multicancer Biomarker

Noninvasive and Multicancer Biomarkers: The Promise of LINE-1 Retrotransposons

LINE-1-ORF1p Is a Promising Biomarker for Early Cancer Detection, But More Research Is Needed

‘Pan-Cancer’ Found in Highly Sensitive Blood Test

University of Queensland Researches May Have Found a Universal Biomarker That Identifies Cancer in Various Human Cells in Just 10 Minutes!

This research could lead to a useful liquid biopsy test that would be a powerful new tool for clinical laboratories and anatomic pathologists

Cancer researchers have long sought the Holy Grail of diagnostics—a single biomarker that can quickly detect cancer from blood or biopsied tissue. Now, researchers in Australia may have found that treasure. And the preliminary diagnostic test they have developed reportedly can return results in just 10 minutes with 90% accuracy.

In a news release, University of Queensland researchers discussed identifying a “simple signature” that was common to all forms of cancer, but which would stand out among healthy cells. This development will be of interest to both surgical pathologists and clinical laboratory managers. Many researchers looking for cancer markers in blood are using the term “liquid biopsies” to describe assays they hope to develop which would be less invasive than a tissue biopsy.

“This unique nano-scaled DNA signature appeared in every type of breast cancer we examined, and in other forms of cancer including prostate, colorectal, and lymphoma,” said Abu Sina, PhD, Postdoctoral Research Fellow at the Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland (UQ), in the news release.

“We designed a simple test using gold nanoparticles that instantly change color to determine if the three-dimensional nanostructures of cancer DNA are present,’ said Matt Trau, PhD, Professor of Chemistry at the University of Queensland, and Deputy Director and Co-Founder of UQ’s AIBN, in the news release.

The team’s test is preliminary, and more research is needed before it will be ready for Australia’s histopathology laboratories (anatomic pathology labs in the US). Still, UQ’s research is the latest example of how increased knowledge of DNA is making it possible for researchers to identify new biomarkers for cancer and other diseases.

“We certainly don’t know yet whether it’s the holy grail for all cancer diagnostics, but it looks really interesting as an incredibly simple universal marker of cancer, and as an accessible and inexpensive technology that doesn’t require complicated lab-based equipment like DNA sequencing,” Trau added.

Such a diagnostic test would be a boon to clinical laboratories and anatomic pathology groups involved in cancer diagnosis and the development of precision medicine treatments.

One Test, 90% Accuracy, Many Cancers

The UQ researchers published their study in the journal Nature Communications. In it, they noted that “Epigenetic reprogramming in cancer genomes creates a distinct methylation landscape encompassing clustered methylation at regulatory regions separated by large intergenic tracks of hypomethylated regions. This methylation landscape that we referred to as ‘Methylscape’ is displayed by most cancer types, thus may serve as a universal cancer biomarker.”

While methyl patterning is not new, the UQ researchers say they were the first to note the effects of methyl pattern in a particular solution—water. With the aid of transmission electron microscopy, the scientists saw DNA fragments in three-dimensional structures in the water. But they did not observe the signature in normal tissues in water.

Methylation are marks that indicate whether pieces of DNA should be read,” Dino DiCarlo, PhD, Professor in the Department of Bioengineering and Biomedical Engineering, University of California Los Angeles (UCLA) and Director of Cancer Nanotechnology at UCLA’s Jonsson Comprehensive Cancer Center, told USA Today.


“To date, most research has focused on the biological consequences of DNA Methylscape changes, whereas its impact on DNA physicochemical properties remains unexplored,” UQ scientists Matt Trau, PhD (left), Abu Sina, PhD (center), and Laura Carrascosa (right), wrote in their study. “We exploit these Methylscape differences to develop simple, highly sensitive, and selective electrochemical or colorimetric one-step assays for the detection of cancer.” (Photo copyright: University of Queensland.)

Their test averaged 90% accuracy during the testing of 200 human cancer samples. Furthermore, the researchers found the DNA structure to be the same in breast, prostate, and bowel cancers, as well as lymphomas, noted The Conversation.

“We find that DNA polymeric behavior is strongly affected by differential patterning of methylcytosine leading to fundamental differences in DNA solvation and DNA-gold affinity between cancerous and normal genomes,” the researchers wrote in NatureCommunications.“We exploit these methylscape differences to develop simple, highly sensitive, and selective electrochemical or one-step assays for detection of cancer.”

Next Steps for the “Gold Test”

“This approach represents an exciting step forward in detecting tumor DNA in blood samples and opens up the possibility of a generalized blood-based test to detect cancer, Ged Brady, PhD, Cancer Research UK Manchester Institute, told The Oxford Scientist. “Further clinical studies are required to evaluate the full clinic potential of the method.”

Researchers said the next step is a larger clinical study to explore just how fast cancer can be detected. They expressed interest in finding different cancers in body fluids and at various stages. Another opportunity they envision is to use the cancer assay with a mobile device.

DiCarlo told USA Today that such a mobile test could be helpful to clinicians needing fast answers for people in rural areas. However, he’s also concerned about false positives. “You don’t expect all tumors to have the same methylation pattern because there’s so many different ways that cancer can develop,” he told USA Today. “There are some pieces that don’t exactly align logically.”

The UQ researchers have produced an intriguing study that differs from other liquid biopsy papers covered by Dark Daily. While their test may need to be used in combination with other diagnostic tests—MRI, mammography, etc.—it has the potential to one day be used by clinical laboratories to quickly reveal diverse types of cancers.  

—Donna Marie Pocius

Related Information:

Nano-Signature Discovery Could Revolutionize Cancer Diagnosis

Epigentically Reprogrammed Methylation Landscape Drives the DNA Self-Assembly and Serves as a Universal Cancer Biomarker

One Test to Diagnose Them All: Researchers Exploit Cancers’ Unique DNA Signature

Cancer Researchers in Australia Develop Universal Blood Test

Universal 10-Minute Cancer Test in Sight

A 10-Minute, Universal Blood Test for Cancer

Smaller, Faster Flow Cytometer Could Be Used by Clinical Laboratories in Community Hospitals to Support Personalized Medical Diagnostics

Researchers in Germany want to shrink flow cytometers—currently as large as home washing machines—down to the size of a shoebox, while making their device more accurate

Flow cytometers, essential to the diagnosis of blood cancers, are in for a major makeover, if researchers at a technology institute in Germany are successful at engineering a smaller, cheaper, and more automated version of today’s large and expensive flow cytometer systems. If this happens, it would make it possible for clinical laboratories in many community hospitals to use these more compact flow cytometers in support of patient care.

Flow cytometers have been around for about 40 years; however, the equipment is expensive, large, and the process so lengthy and complex that only specially-trained scientists can operate it. Those factors make it difficult for patients and clinicians to reap the full benefit of the information that flow cytometry can yield. (more…)

;