News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Future EHR Systems Could Impact Clinical Laboratories by Offering Cloud Services and Full Access to Patients on Mobile Devices

Future EHRs will focus on efficiency, machine learning, and cloud services—improving how physicians and medical laboratories interact with the systems to support precision medicine and streamlined workflows

When the next generation of electronic health record (EHR) systems reaches the market, they will have advanced features that include cloud-based services and the ability to collect data from and communicate with patients using mobile devices. These new developments will provide clinical laboratories and anatomic pathology groups with new opportunities to create value with their lab testing services.

Proposed Improvements and Key Trends

Experts with EHR developers Epic Systems, Allscripts, Accenture, and drchrono spoke recently with Healthcare IT News about future platform initiatives and trends they feel will shape their next generation of EHR offerings.

They include:

  • Automation analytics and human-centered designs for increased efficiency and to help reduce physician burnout;
  • Improved feature parity across mobile and computer EHR interfaces to provide patients, physicians, and medical laboratories with access to information across a range of technologies and locations;
  • Integration of machine learning and predictive modeling to improve analytics and allow for better implementation of genomics-informed medicine and population health features; and
  • A shift toward cloud-hosted EHR solutions with support for application programming interfaces (APIs) designed for specific healthcare facilities that reduce IT overhead and make EHR systems accessible to smaller practices and facilities.

Should these proposals move forward, future generations of EHR platforms could transform from simple data storage/retrieval systems into critical tools physicians and medical laboratories use to facilitate communications and support decision-making in real time.

And, cloud-based EHRs with access to clinical labs’ APIs could enable those laboratories to communicate with and receive data from EHR systems with greater efficiency. This would eliminate yet another bottleneck in the decision-making process, and help laboratories increase volumes and margins through reduced documentation and data management overhead.

Cloud-based EHRs and Potential Pitfalls

Cloud-based EHRs rely on cloud computing, where IT resources are shared among multiple entities over the Internet. Such EHRs are highly scalable and allow end users to save money by hiring third-party IT services, rather than maintaining expensive IT staff.

Kipp Webb, MD, provider practice lead and Chief Clinical Innovation Officer at Accenture told Healthcare IT News that several EHR vendors are only a few years out on releasing cloud-based inpatient/outpatient EHR systems capable of meeting the needs of full-service medical centers.

While such a system would mean existing health networks would not need private infrastructure and dedicate IT teams to manage EHR system operations, a major shift in how next-gen systems are deployed and maintained could lead to potential interoperability and data transmission concerns. At least in the short term.

Yet, the transition also could lead to improved flexibility and connectivity between health networks and data providers—such as clinical laboratories and pathologist groups. This would be achieved through application programming interfaces (APIs) that enable computer systems to talk to each other and exchange data much more efficiently.

“Perhaps one of the biggest ways having a fully cloud-based EHR will change the way we as an industry operate will be enabled API access.” Daniel Kivatinos, COO and founder of drchrono, told Healthcare IT News. “You will be able to add other partners into the mix that just weren’t available before when you have a local EHR install only.”

Paul Black, CEO of Allscripts, believes these changes will likely require more than upgrading existing software or hardware. “The industry needs an entirely new approach to the EHR,” he told Healthcare IT News. “We’re seeing a huge need for the EHR to be mobile, cloud-based, and comprehensive to streamline workflow and get smarter with every use.” (Photo copyright: Allscripts.)

Reducing Physician Burnout through Human-Centered Design

As Dark Daily reported last year, EHRs have been identified as contributing to physician burnout, increased dissatisfaction, and decreased face-to-face interactions with patients.

Combined with the increased automation, Carl Dvorak, President of Epic Systems, notes next-gen EHR changes hold the potential to streamline the communication of orders, laboratory testing data, and information relevant to patient care. They could help physicians reach treatment decisions faster and provide laboratories with more insight, so they can suggest appropriate testing pathways for each episode of care.

“[Automation analytics] holds the key to unlocking some of the secrets to physician well-being,” Dvorak told Healthcare IT News. “For example, we can avoid work being unnecessarily diverted to physicians when it could be better managed by others.”

Black echoes similar benefits, saying, “We believe using human-centered design will transform the way physicians experience and interact with technology, as well as improve provider wellness.”

Some might question the success of the first wave of EHR systems. Though primarily built to address healthcare reform requirements, these systems provided critical feedback and data to EHR developers focused not on simply fulfilling regulatory requirements, but on meeting the needs of patients and care providers as well.

If these next-generations systems can help improve the quality of data recording, storage, and transmission, while also reducing physician burnout, they will have come a long way from the early EHRs. For medical laboratory professionals, these changes will likely impact how orders are received and lab results are reported back to doctors in the future. Thus, it’s worth monitoring these developments.

—Jon Stone

Related Information:

Next-Gen EHRs: Epic, Allscripts and Others Reveal Future of Electronic Health Records

Next-Gen IT Infrastructure: A Nervous System Backed by Analytics and Context

EHR Systems Continue to Cause Burnout, Physician Dissatisfaction, and Decreased Face-to-Face Patient Care

Apple’s Update of Its Mobile Health App Consolidates Data from Multiple EHRs and Makes It Easier to Push Clinical Laboratory Data to Patients

January’s press release confirmed the tech company is working to integrate critical medical data into its mobile devices, while further promoting interoperability and patient access

While interoperability has improved since the earliest electronic health record (EHR) systems, today’s active patients often need to sort through multiple healthcare portals—including those of clinical laboratories and anatomic pathology groups—to get a comprehensive view of their medical history. Not only can this be time consuming, but also inconvenient if the patient lacks access to a computer.

Thus, it’s no surprise that in a January 24 press release, mobile technology giant Apple announced plans to enter the development ring and create an improved EHR for its mobile device users by updating its existing “Health” mobile application (app). The iOS 11.3 update, among other things, is designed to enable Apple iPhone owners to receive critical medical data, such as medical laboratory test results, directly on their devices.

“Our goal is to help consumers live a better day. We’ve worked closely with the health community to create an experience everyone has wanted for years—to view medical records easily and securely right on your iPhone,” said Apple COO Jeff Williams in the press release.

Jeff-Williams-COO-Apple

Jeff Williams (above), COO at Apple, notes that, “By empowering customers to see their overall health, we hope to help consumers better understand their health and help them lead healthier lives.” (Photo copyright: Apple.)

The new features are already available to developers in the latest iOS 11.3 beta 3 release. However, release to the public is expected soon with the issuance of the iOS 11.3 final release. This means that patients will not need to download extra apps—or remember to use them—to take advantage of the feature.

New Way to Improve Patients’ Access to Health Data or Just Another Data Silo?

The Apple Health Records platform adheres to Fast Healthcare Interoperability Resources (FHIR) protocols for transmission of data. Providers send information to Apple which then aggregates the information, transmits it to patients’ iPhones and notifies them of the updates.

All information stored on the device is encrypted in storage and protected from unauthorized access by the user’s password.

Through the new Health Records interface, users view this aggregated data as a timeline, conduct searches, and share information with other parties as they deem appropriate.

Current medical information listed in the press release includes:

  • Allergies;
  • Conditions;
  • Immunizations;
  • Clinical laboratory results;
  • Medications;
  • Procedures; and,
  • Vitals.

Currently, the platform integrates data from three major EHR developers:

  • Epic;
  • Cerner; and,
  • AthenaHealth

Apple-health-records-ios-11.3-Update

Apple’s update to the Health app makes it easier for people to access and control of all of their health records and data. This included medical laboratory tests. (Image and caption copyright: Apple.)

Apple is also working with 12 health institutions across the US in the first phase of the project, including:

In the Apple press release, Stephanie Reel, CIO at John Hopkins Medicine in Baltimore, stated, “Streamlining information sharing between patients and their caregivers can go a long way towards making the patient experience a positive one. This is why we are excited about working with Apple to make accessing secure medical records from an iPhone as simple for a patient as checking email.”

Previous Attempts at Mobile Health Record Devices Got Mixed Results

This isn’t the first time a major technology company has attempted to enter the mobile health market. Google Health was shuttered in 2011 citing low adoption. Wearable fitness trackers, such as Fitbit (NYSE:FIT) enjoyed a bubble, but are now seeing mixed success in terms of long-term adoption and use, according to The Motley Fool. More to the point, they’ve never quite become the holy grail of monitoring and data collection that some experts predicted, Huffington Post reported.

However, Apple’s investments and interest in healthcare-related technologies has led to wide speculation that they would enter the health market this year. (See Dark DailyApple May Be Developing Mobile Device Technology to Monitor User’s Health and Transmit Data in Real Time.”)

Larry Dignan, Editor-in-Chief at ZDNet, builds a compelling case for why this could be the attempt that succeeds in providing a consolidated platform for clinical laboratories, physicians, and other care providers to push data directly to patients and—with the patient’s permission—to each other, regardless of the platforms healthcare facilities use to store and transmit data.

He notes that much of Apple’s newest features build on foundations laid by the healthcare industry to create scalable, functional EHR systems. By working with existing protocols, Apple’s Health Records platform is already positioned for compatibility with many healthcare providers.

Furthermore, Apple is already known for partnering at the enterprise level with major businesses and industries, while also holding the trust of millions of Americans who store their personal information on Apple devices.

Is Apple the Future of EHRs?

Despite this, until the platform—and adoption by the public—is proven a success, it will be yet another walled garden of medical information. Even then, Apple is only one segment of the global mobile market.

Unless Apple provides access to other platforms (such as Android), those patients—and the medical communities serving them—are left consolidating information on their own through a sprawl of various portals. This also means that medical laboratories, pathology groups, and other service providers must continue to invest time and funding into communicating data in ways compatible with a plethora of internal and external systems and software.

Still, the platform offers an intriguing glimpse at the future of medical records and heralds a shift toward empowering patients with easy, comprehensive access to their own data, which would be a boon to the medical laboratory industry.

—Jon Stone

Related Information:

Apple Previews iOS 11.3

Apple Announces Effortless Solution Bringing Health Records to iPhone

With Medical Records Tools, Apple Wades Deeper into Digital Health

Apple Confirms “Health Records” Solution with Aim to Bring Medical Records to iPhone

Apple Will Let You Keep Your Medical Records on Your iPhone

Apple Unveils mHealth Integration with EMR Data through Health App

Apple, Inc. Wants to Solve the Problem of Electronic Health Records

Viewpoint: How Realistic Is Apple’s Attempt at the EHR Industry? Very—6 Reasons Why

Apple Can Win Electronic Medical Record Game with Health Records in iOS 11.3: Here’s 7 Reasons Why

Apple Is Officially in the EHR Business. Now What?

Apple to Launch Health Records App with HL7’s FHIR Specifications at 12 Hospitals

Could Amazon or Apple Actually Make a Dent in the EHR Market?

Apple May Be Developing Mobile Device Technology to Monitor User’s Health and Transmit Data in Real Time

EHR Systems Continue to Cause Burnout, Physician Dissatisfaction, and Decreased Face-to-Face Patient Care

New study published in the Annals of Family Medicine (AFM) indicates that despite efforts to improve EHR usability and efficiency, primary care physicians continue to spend more than 50% of their workdays on computerized physician order entry (CPOE) and other clerical tasks instead of engaging in direct patient care

Do electronic health record (EHR) systems improve or degrade the productivity of physicians? That question has been the subject of robust debate. Now comes a new study in a peer-reviewed journal with a surprising finding: physicians spend up to 50% or more of their workday on EHR-related tasks.

In theory, EHRs offer a wealth of benefits over traditional paper-based systems. In practice, however, between interoperability concerns and implementation costs, they have proven a daunting undertaking for even the largest healthcare systems.

While EHRs might offer easy access to patient data—including medical laboratory records and anatomic pathology reports—this information doesn’t enter itself into databases or make itself instantly accessible. That requires human interaction, which is time consuming and prone to errors.

Thus, research from the American Medical Association (AMA) and the University of Wisconsin revealing that the time it takes to enter data, address communications, and perform other clerical tasks adds up to more than 50% of a physician’s workday is of paramount importance. That’s because physician dissatisfaction and departures from medical practice have increased each year since the EHR revolution began, and reports are the situation is getting worse.

In their retrospective cohort study involving 142 family medicine physicians, published in the Annals of Family Medicine (AFM), Brian G. Arndt, MD, from the School of Medicine and Public Health, Department of Family Medicine and Community Health, University of Wisconsin, et al, reported that clinicians spend 52% of their 11.4-hour workday interacting with an EHR system. On average, nearly 1.5 hours of this EHR interaction occurred outside clinic hours during physicians’ personal time. The researchers assessed interactions using event logs from the Epic EHR system spanning from July 1, 2013, to June 30, 2016.

Researchers validated their data through direct observation of 14 nonresident family medicine physicians from May through June of 2016. This observation showed similar findings. During clinical hours, 60% of physician time related to non-EHR tasks, with 40% of time devoted to EHR tasks.

Documentation Burden Leads to Physician Burnout, Dissatisfaction

“Our family medicine physicians spent 44% of their workday (157 minutes) in the EHR doing clerical and other administrative tasks,” study authors reported. “Computerized physician order entry accounted for 12.1% of their clinic hours (43 minutes) in the EHR. The burden related to order entry has been associated with clinician burnout, dissatisfaction, and intent to leave practice.”

Researchers tracked various tasks and assigned them to categories. Of the tasks tracked, only 32.1% fell under the heading of “medical care.” Reviewing chart notes, chart medications, and problem lists topped medical care tasks.

Review of clinical laboratory results in charts ranked near the bottom, with only 2.5% of the total time spent performing medical care tasks. These tasks, however, could offer opportunities for medical laboratories to help physicians identify opportunities to optimize reporting and test-ordering processes and improve productivity for clinicians who are responsible for most of the data entry burden associated with EHRs.

One potential solution to EHR burnout involves the use of medical scribes who work with physicians during and after a patient’s visit inputting encounter data. Alan Bank, MD, cardiologist at Allina Health, and medical scribe Jaeda Roth, are shown above during a patient visit. Bank told the StarTribune  that he’s convinced scribes help doctors get more done and reduce billing errors. (Photo and caption copyright: Elizabeth Flores/StarTribune.)

Researchers also questioned the EHR’s role as a communication or telemedicine hub. “There is insufficient evidence that such asynchronous care improves health outcomes, cost, and overall healthcare use,” they noted.

However, even for intra-practice communications between healthcare professionals, EHRs may not be the most efficient approach. “Face-to-face communication is associated with increased efficiency,” the researchers noted. “Whereas more electronic communication among team members leads to greater clinician and staff dissatisfaction, as well as poorer clinical outcomes and increased healthcare use among patients with coronary artery disease.”

EHR Cost/Benefits Generate Debate

This latest study is not the first to suggest that EHRs are creating problems for clinicians. While there appear to be no trends between studies, multiple researchers have highlighted the workload created by EHR systems in recent years.

In a study published in the Annals of Internal Medicine (AIM), Christine A. Sinsky, MD, of the American Medical Association, et al, analyzed data from the observation of 57 US-based physicians in family medicine, internal medicine, cardiology, and orthopedics.

Comparing data across 430 hours of observation, researchers concluded, “For every hour physicians provide direct clinical face time to patients, nearly two additional hours are spent on EHR and desk work within the clinic day. Outside office hours, physicians spend another one to two hours of personal time each night doing additional computer and other clerical work.”

However, in a 2015 study published in the Annals of Family Medicine (AFM), Valerie Gilchrist, MD, Chair of the Department of Family Medicine and Family Health at the School of Medicine and Public Health, University of Wisconsin, et al, found lower numbers. Observing 27 community-based family physicians across a single practice day, the researchers found that 39% of the practice day on average was devoted to office-based time. Of that time, 61% was spent on medical care related tasks.

Building a Better EHR

While medical laboratories and diagnostic specialists—such as anatomic pathologists—can work with physicians to streamline ordering and reporting processes relating to EHRs, much of the burden comes from how EHR systems are designed and used.

In a 2016 New England Journal of Medicine Catalyst Panel on EHRsTait Shanafelt, MD, Director of the Mayo Clinic Department Program on Physician Wellness, noted that one of the most contested features of EHR systems in the US, according to the AMA and Mayo Clinic, is computerized physician order entry (CPOE).

Later in the discussion, Sinsky discussed a recent trip to the UK, where she observed general practitioners (GPs) at the National Health Service (NHS). She noted that most GPs loved their EHRs. However, those EHRs were designed with GP input to best work with an NHS GP’s typical workflows and procedures. She also noted that overall usage is different in the UK, as EHRs there are not tied into billing systems.

As Dark Daily has reported, up to 70% of data stored in a patient’s electronic health record is clinical pathology laboratory related. As newer EHRs replace outdated models, it will remain critical for healthcare professionals—including clinical laboratory professionals who generate most of the data stored in EHRs—to assess, track, and report on what is working with various platforms and what is not.

Communicating this end-user data to EHR developers is essential to designing EHRs that reduce unneeded burden and clerical load on physicians, rather than increasing it.

Clinical laboratories tat wish to take proactive steps might contact physicians and other professionals in their workgroups to tailor data generation, reporting, and ordering processes to the EHRs in use at those practices.

—Jon Stone

Related Information:

Primary Care Doctors Spend More Than 50% of Workday on EHR Tasks, American Medical Association Study Finds

Tethered to the EHR: Primary Care Physician Workload Assessment Using EHR Event Log Data and Time-motion Observations

Study: EHRs Bloat Clerical Workload for Docs

Harried Doctors Hail the Rise of the Medical Scribe

Type and Click Tasks Drain Half the Primary Care Workday

Allocation of Physician Time in Ambulatory Practice: A Time and Motion Study in 4 Specialties

Doctors Wasting Over Two-Thirds of Their Time Doing Paperwork

Physician Activities During Time Out of the Examination Room

Heavy Burden of EHRs Could Contribute to Physician Burnout

Blockchain Technology Could Impact How Clinical Laboratories and Pathology Groups Exchange Lab Test Data

Insurers might use blockchain technology to enable instantaneous verification and interoperability of healthcare records, which could impact clinical laboratory payment systems

Medical laboratories and anatomic pathology groups are keenly aware that connected, secure, interoperable health records are critical to smooth, efficient workflows. However, the current often dysfunctional state of health information technology (HIT) in America’s healthcare system often disrupts the security and functionality of information exchange between hospital and ancillary practice patient record systems.

One solution to this could be blockchain technology. With its big data and abundant touchpoints (typically: insurer, laboratory, physician, hospital, and home care), the healthcare industry could be ripe for blockchain information exchanges. Blockchain might enable secure and trusted linkage of payer, provider, and patient data. But what exactly is blockchain technology and how might it impact your laboratory?

Blockchains Could Transform Healthcare

Blockchain refers to a decentralized and distributed ledger that enables the interface of computer servers for the purpose of making, tracking, and storing linked transactions.

“At its core, blockchain is a distributed system recording and storing transaction records. More specifically, blockchain is a shared, immutable record of peer-to-peer transactions built from linked transaction blocks and stored in a digital ledger,” explained risk-management group Deloitte in a report, which goes on to state:

  • “Blockchain technology has the potential to transform healthcare, placing the patient at the center of the healthcare ecosystem and increasing the security, privacy, and interoperability of health data. This technology could provide a new model for health information exchanges (HIE) by making electronic medical records more efficient, disintermediated, and secure.
  • “Blockchain relies on established cryptographic techniques to allow each participant in a network to interact (e.g., store, exchange, and view information), without pre-existing trust between the parties.
  • “In a blockchain system, there is no central authority; instead, transaction records are stored and distributed across all network participants. Interactions with the blockchain become known to all participants and require verification by the network before information is added, enabling trustless collaboration between network participants while recording an immutable audit trail of all interactions.”

Key principles of blockchain (above) demonstrate the decentralization of the healthcare data. In some ways, this resembles electronic health record (EHR) systems that feature federated databases, rather than centralized databases. (Image copyright: Deloitte.)

Instant Verifications and Authorizations at Point-of-Care

In a Healthcare Finance News (HFN) article, insurers acknowledged blockchain’s potential for information verification and authorizations in real-time, fast payments, and access to patient databases that could fulfill population health goals.

“Everybody that is part of a transaction has access to the network. There’s no need for an intermediary. Blockchain allows for verification instantly,” noted Chris Kay, JD, Senior Vice President and Chief Innovation Officer at Humana, in the HFN article.

At clinical laboratories, blockchain could enable nearly instantaneous verification of a patient’s health insurance at time of service. Blockchain also could enable doctors to review a patient’s medical laboratory test results in real-time, even when multiple labs are involved in a person’s care.

“Everyone has to have a node on the blockchain and have a server linked to the blockchain. The servers are the ones talking to one another,” explained Kay. “What’s really transformative about this is it takes the friction out of the system. If I see a doctor, the doctor knows what insurance I have because it’s on the network. All this is verified through underlying security software.”

Healthcare Obstacles to Overcome

Breaking down data silos and loosening proprietary holds on information can help healthcare providers prepare for blockchain. However, in our highly regulated industry, blockchain is at least five years away, according to blockchain experts in a Healthcare IT News (HIT News) article.

“We’re hearing that blockchain is going to revolutionize the way we interact with and store data. But it’s not going to happen tomorrow. Let’s find smaller problems we can solve as a starting point—projects that don’t have the regulatory hurdles—and then take baby steps that don’t require breaking down all the walls,” advised Joe Guagliardo, JD, Intellectual Property/Technology Attorney and Chair of the Blockchain Technology Group at Pepper Hamilton, a Philadelphia-based law firm, in the HIT News article.

Healthcoin: Rewarding Patients for Improved Biomarkers

One company has already started to work with blockchain in healthcare. Healthcoin is a blockchain-based platform aimed at prevention of diabetes, heart disease, and obesity. The idea is for employers, insurers, and others to use Healthcoin (now in pre-launch) to reward people based on biomarker improvements shown in medical laboratory tests.

Healthcoin’s Chief Executive Officer Diego Espinosa and Chief Operating Officer Nick Gogerty, founded the company in 2016 after Espinosa, who had been diagnosed with diabetes, made diet changes to reverse it, according to an article in Bitcoin Magazine.

“When I saw my blood labs, the idea for Healthcoin was born—shifting the focus of prevention to ‘moving the needle’ on biomarkers, as opposed to just measuring steps,” Espinosa told Bitcoin Magazine.

Blockchain Provides Security

What does blockchain provide that isn’t available through other existing technologies?  According to Deloitte, it’s security and trust.

“Today’s health records are typically stored within a single provider system. With blockchain, providers could either select which information to upload to a shared blockchain when a patient event occurs, or continuously upload to the blockchain,” Deloitte notes. “Blockchain’s security and ability to establish trust between entities are the reasons why it can help solve the interoperability problem better than today’s existing technologies.”

Should Clinical Laboratories Prepare for Blockchain?

It’s important to note that insurers are contemplating blockchain and making relevant plans and strategies. Dark Daily believes the potential exists for blockchain technology to both disrupt existing business relationships, including those requiring access to patient test data, and to create new opportunities to leverage patient test data in real-time that could generate new revenue sources for labs. Thus, to ensure smooth payments, medical laboratory managers and pathology group stakeholders should explore blockchain’s value to their practices.

—Donna Marie Pocius

 

Related Information:

Blockchain Opportunities for Health Care: A New Model for Health Information Exchanges

Blockchain Will Link Payer, Provider, Patient Data Like Never Before

Old Ways of Thinking Won’t Work for Blockchain, Experts Say

Blockchain-Styled Solutions for Healthcare on the Rise

Can Blockchain Give Healthcare Payers Better Analytical Insight?

Blockchain in Health and Life Insurance: Turning a Buzzword into a Breakthrough

Does Blockchain Have a Place in Healthcare?

Interoperability and Meaningful Use Attestation Continues to Increase as the Top 10 EHR Systems of 2015 Vie for Market Dominance

Pathologists and clinical lab managers will not be surprised to learn that Epic leads the competitive electronic health record system market, as ranked by SK&A

No one will be surprised that, in one company’s rankings of the top electronic health record (EHR) systems for 2015, the number one position is held by Epic Systems Corporation. More broadly, about half the market share of EHR systems is concentrated among just five EHR vendors.

Overall Ranking of Top 10 EHR Vendors in 2015

The report from SK&A outlines the top 10 EHR vendors by overall market share during 2015 as follows:

EHR Vendor and Market Share %

1) Epic Systems Corporation  11.6%
2) eClinicalWorks   10.2%
3) Allscripts   8.7%
4) Practice Fusion   6.7%
5) NextGen Healthcare  5.5%
6) General Electric Healthcare IT  3.6%
7) Cerner Corporation   3.5%
8) Athenahealth, Inc.   3.3%
9) McKesson Provider Technologies  3.2%
10) Amazing Charts Inc.   2.3% (more…)

;