News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Lurking Below: NIH Study Reveals Surprising New Source of Antibiotic Resistance That Will Interest Microbiologists and Medical Laboratory Scientists

Genomic analysis of pipes and sewers leading from the National Institutes of Health Clinical Care Center in Bethesda, Md., reveals the presence of carbapenem-resistant organisms; raises concern about the presence of multi-drug-resistant bacteria previously undetected in hospital settings

If hospitals and medical laboratories are battlegrounds, then microbiologists and clinical laboratory professionals are frontline soldiers in the ongoing fight against hospital-acquired infections (HAIs) and antibiotic resistance. These warriors, armed with advanced testing and diagnostic skills, bring expertise to antimicrobial stewardship programs that help block the spread of infectious disease. In this war, however, microbiologists and medical laboratory scientists (AKA, medical technologists) also often discover and identify new and potential strains of antibiotic resistance.

One such discovery involves a study published in mBio, a journal of the American Society for Microbiology (ASM), conducted by microbiologist Karen Frank, MD, PhD, D(AMBB), Chief of the Microbiology Service Department at the National Institutes of Health (NIH), and past-president of the Academy of Clinical Laboratory Physicians and Scientists (ACLPS). She and her colleagues identified a surprising source of carbapenem-resistant organisms—the plumbing, sewers, and wastewater beneath the National Institutes of Health Center (NIHCC) in Bethesda, Md. And they theorize similar “reservoirs” could exist beneath other healthcare centers as well.

Potential Source of Superbugs and Hospital-Acquired Infections

According to the mBio study, “Carbapenemase-producing organisms (CPOs) are a global concern because of the morbidity and mortality associated with these resistant Gram-negative bacteria. Horizontal plasmid transfer spreads the resistance mechanism to new bacteria, and understanding the plasmid ecology of the hospital environment can assist in the design of control strategies to prevent nosocomial infections.”

Karen Frank, MD, PhD

Karen Frank, MD, PhD (above), is Chief of the Microbiology Service Department at the National Institutes of Health and past-president of the Academy of Clinical Laboratory Physicians and Scientists. She suggests hospitals begin tracking the spread of the bacteria. “In the big picture, the concern is the spread of these resistant organisms worldwide, and some regions of the world are not tracking the spread of the hospital isolates.” (Photo copyright: National Institutes of Health.)

Frank’s team used Illumina’s MiSeq next-generation sequencer and single-molecule real-time (SMRT) sequencing paired with genome libraries, genomics viewers, and software to analyze the genomic DNA of more than 700 samples from the plumbing and sewers. They discovered a “potential environmental reservoir of mobile elements that may contribute to the spread of resistance genes, and increase the risk of antibiotic resistant ‘superbugs’ and difficult to treat hospital-acquired infections (HAIs).”

Genomic Sequencing Identifies Silent Threat Lurking in Sewers

Frank’s study was motivated by a 2011 outbreak of antibiotic-resistant Klebsiella pneumoniae bacteria that spread through the NIHCC via plumbing in ICU, ultimately resulting in the deaths of 11 patients. Although the hospital, like many others, had dedicated teams working to reduce environmental spread of infectious materials, overlooked sinks and pipes were eventually determined to be a disease vector.

In an NBC News report on Frank’s study, Amy Mathers, MD, Director of The Sink Lab at the University of Virginia, noted that sinks are often a locus of infection. In a study published in Applied and Environmental Microbiology, another journal of the ASM, Mathers noted that bacteria in drains form a difficult to clean biofilm that spreads to neighboring sinks through pipes. Mathers told NBC News that despite cleaning, “bacteria stayed adherent to the wall of the pipe” and even “splashed out” into the rooms with sink use.

During the 2011-2012 outbreak, David Henderson, MD, Deputy Director for Clinical Care at the NIHCC, told the LA Times of the increased need for surveillance, and predicted that clinical laboratory methods like genome sequencing “will become a critical tool for epidemiology in the future.”

Frank’s research fulfilled Henderson’s prediction and proved the importance of genomic sequencing and analysis in tracking new potential sources of infection. Frank’s team used the latest tools in genomic sequencing to identify and profile microbes found in locations ranging from internal plumbing and floor drains to sink traps and even external manhole covers outside the hospital proper. It is through that analysis that they identified the vast collection of CPOs thriving in hospital wastewater.

In an article, GenomeWeb quoted Frank’s study, noting that “Over two dozen carbapenemase gene-containing plasmids were identified in the samples considered” and CPOs turned up in nearly all 700 surveillance samples, including “all seven of the wastewater samples taken from the hospital’s intensive care unit pipes.” Although the hospital environment, including “high-touch surfaces,” remained free of similar CPOs, Frank’s team noted potential associations between patient and environmental isolates. GenomeWeb noted Frank’s findings that CPO levels were in “contrast to the low positivity rate in both the patient population and the patient-accessible environment” at NIHCC, but still held the potential for transmission to vulnerable patients.

Antibiotic-Resistance: A Global Concern

The Centers for Disease Control and Prevention (CDC) reports that more than two million illnesses and 23,000 deaths in the US are caused each year by antibiotic resistance, with 14,000 deaths alone linked to antibiotic resistance associated with Clostridium difficile infections (CDI). Worldwide those numbers are even higher.

Second only to CDI on the CDC’s categorized list of “18 drug-resistant threats to the United States” are carbapenem-resistant Enterobacteriaceae (CRE).

Since carbapenems are a “last resort” antibiotic for bacteria resistant to other antibiotics, the NIHCC “reservoir” of CPOs is a frightening discovery for physicians, clinical laboratory professionals, and the patients they serve.

The high CPO environment in NIHCC wastewater has the capability to spread resistance to bacteria even without the formal introduction of antibiotics. In an interview with Healthcare Finance News, Frank indicated that lateral gene transfer via plasmids was not only possible, but likely.

“The bacteria fight with each other and plasmids can carry genes that help them survive. As part of a complex bacterial community, they can transfer the plasmids carrying resistance genes to each other,” she noted. “That lateral gene transfer means bacteria can gain resistance, even without exposure to the antibiotics.”

The discovery of this new potential “reservoir” of CPOs may mean new focused genomic work for microbiologists and clinical laboratories. The knowledge gained by the discovery of CPOs in hospital waste water and sinks offers a new target for study and research that, as Frank concludes, will “benefit healthcare facilities worldwide” and “broaden our understanding of antimicrobial resistance genes in multi-drug resistant (MDR) bacteria in the environment and hospital settings.”

Amanda Warren

Related Information:

Genomic Analysis of Hospital Plumbing Reveals Diverse Reservoir of Bacterial Plasmids Conferring Carbapenem Resistance

Snooping Around in Hospital Pipes, Scientists Find DNA That Fuels the Spread of Superbugs

CSI Bethesda: Sleuths Used Sequenced Genome to Track Down Killer

Antibiotic/Antimicrobial Resistance

Study Tracks How Superbugs Splash Out of Hospital Sink Drains

CDC: Biggest Threats

Antimicrobial Stewardship: How the Microbiology Laboratory Can Right the Ship

Superbugs Breeding in Hospital Plumbing Put Patients at Risk

Microbiologists at Weill Cornell Use Next-Generation Gene Sequencing to Map the Microbiome of New York City Subways

Point-of-Care DNA Sequencer Inching Closer to Widespread Use as Beta-Testers Praise Oxford Technologies’ Pocketsize, Portable Nanopore Device

MinION could help achieve NIH’s goal of $1,000 human genome sequencing and in remote clinics and outbreak zones shift testing away from medical laboratories

Point-of-care DNA sequencing  technology is edging ever closer to widespread commercial use as the Oxford Nanopore MinION sequencer  draws praise and registers successes in pre-release testing.

A pocketsize gene-sequencing machine such as the MinION could transform the marketplace by shifting DNA testing to remote clinics and outbreak zones while eliminating the need to return samples to clinical laboratories for analysis. Such devices also are expected to increase the need for trained genetic pathologists and medical technologists. (more…)

John Hopkins Researchers Demonstrate Hydrogen Peroxide’s Effectiveness in Preventing HAIs, May Have Use in Clinical Pathology Laboratories

The study found that a Robotic vapor-dispersing device kills and prevents spread of Drug-Resistant Organisms in high-risk patients by 64%

There is a new technology for disinfecting healthcare facilities that is likely to be useful for clinical laboratories and anatomic pathology groups.

A team at Johns Hopkins University Hospital recently published a study about their institution’s use of hydrogen peroxide vapor to disinfect hospital rooms.

The study was conducted over two and one-half years and involved hospital rooms used by thousands of patients. The goal of this study was to verify the effectiveness of a new robot-like device, known as Bioquell Q-10. This system disperses a hydrogen peroxide vapor to disinfect hospital rooms and was described in a news release issued by Baltimore-based Johns Hopkins University Hospital. (more…)

Oregon Publishes Its First Statewide Report on Hospital Infection Rates to Help Consumers

Role of Clinical Pathology Laboratories in Hospitals may be Boosted by New Public Report

Transparency in provider outcomes took another step forward recently as the State of Oregon published its first report of hospital-acquired infections covering the year 2009. Because pathologists and clinical laboratory administrators are likely to eventually see similar public reporting in their states, this development has nationwide implications.

The report was compiled and released by the Office of Oregon Health Policy Research (OHPR). It compares healthcare-acquired infection (HAI) rates at 58 hospitals and health facilities across the state.

(more…)

;