News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Studies Show How Clinical Whole-Exome Sequencing May Forever Change the Future Practice of Medicine while Giving Pathologists a New Opportunity to Deliver Value

Similar study of exome sequencing at UCLA produces findings that mirror the diagnostic outcomes produced by researchers at the three Houston organizations

In recent years, pathologists and other clinical laboratory professionals have seen increasing evidence of the benefits of using exome sequencing for clinical diagnostic purposes.

Confirming their initial published findings of a 25% molecular diagnostic rate, researchers from Baylor College of Medicine (BCM), Baylor Human Genome Center, and the University of Texas Health Science Center at Houston have released results of a large sampling of 2,000 consecutive patients.

In this expanded study, published in the November 12, 2014, issue of the Journal of the American Medical Association (JAMA), 504 patients (25.2%) received a molecular diagnosis and 92 patients (4.6%) benefitted from medical intervention to ameliorate or eliminate negative symptoms. (more…)

New Clinical Laboratory Test Exposes Cancer Cells with Ultra Violet Light: Improves Accuracy of Current Cancer Assays, Say Researchers

New technology accurately distinguishes between cancerous cells and healthy cells. Will it give pathologists a “universal” assay for cancer diagnosis?

In England, a university team has developed a new technology for detecting circulating cancer cells in blood. Their method uses ultraviolet light and the results are so promising that efforts are now underway to develop this method into a clinical laboratory test.

That is why pathologists and medical laboratory professionals may soon have a new tool in their arsenal: one that significantly aids physicians and medical laboratories in the diagnosis of cancer. (more…)

New Insights into Genetic Mechanisms Common to Humans and Simpler Species May Form the Basis for New Diagnostic Tests Performed by Clinical Pathology Laboratories

Scientists participating in the modENCORE study have the goal of understanding the causes of hereditary genetic diseases in humans

New discoveries about the interaction of genes and transcription factors in creating different types of RNA will be of interest to pathologists and clinical chemists performing genetic tests and molecular diagnostic assays in their medical laboratories.

The goal of this research is to better understand hereditary genetic disease in humans. The new knowledge is based on studies of the common fruit fly, or Drosophila melanogaster (D. Melanogaster), and to a lesser extent a tiny worm Caenorhabditis elegans (C. elegans). Both have been used as research models to study the human condition.

Research Could Give Pathologists New Diagnostic Tools (more…)

New Study of Fruit Fly Genome Reveals Complexity of RNA and Provides a Model for Studying Mechanisms for Hereditary Diseases in Humans

This investigation of the fruit fly’s transcriptome—the complete collection of the genome’s RNA—unearthed thousands of new genes, transcripts, and proteins

Scientists have teased another level of information out of the genome. This time, the new insights were developed from studies of the fruit fly’s transcriptome. This knowledge will give pathologists another channel of information that may be useful in developing assays to support more precise diagnosis and therapeutic decisions.

The findings were published in a recent issue of Nature. The study focused on the transcriptome—a complete collection of the genome’s RNA—of the common fruit fly−Drosophila melangogaster. (more…)

Scientists at University of Washington Discover a Second Language in DNA, Possibly Giving Pathologists a New Source of Diagnostic Information

The discovery of dual-purpose condons, called ‘duons’ opens the door to creation of more precise diagnostic and medical laboratory tests, as well as better treatment choices

New insights into the human genome have led to the discovery of a second “code” or “language” within human DNA. Pathologists performing genetic testing will be particularly interested in the implications of this discovery, which the researchers have dubbed “duons.”

It was a research team at the University of Washington (UW) that discovered evidence of a second type of DNA code overlying the protein code that controls transcription factors (TFs). TFs regulate flow of genetic information from DNA to messenger RNA, which manages the synthesis of proteins described by the DNA. (more…)

;