News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Large Study Points to Benefits of Genome Sequencing to Augment Newborn Screening Tests

Researchers find genome sequencing identified conditions missed by standard newborn screening programs that use common clinical laboratory tests

Interim results from a large ongoing pilot study suggest that genome sequencing of newborn children may be more effective than traditional clinical laboratory screening for detection of early-onset genetic conditions. The researchers also found that parents were highly receptive to the idea of performing the sequencing on their newborns.

“The results show us that genome sequencing can radically improve children’s medical care,” said study co-author Joshua Milner, MD, chief of allergy, immunology, and rheumatology services at NewYork-Presbyterian/Columbia University Irving Medical Center, in a Columbia University press release.

The results come from the GUARDIAN (Genomic Uniform-screening Against Rare Disease in All Newborns) study conducted by Columbia University Irving Medical Center, NewYork-Presbyterian (NYP) Health System, and the New York State Department of Health. Collaborators also included Illumina, a maker of next-generation sequencing (NGS) equipment, and GeneDx, a genetic testing company.

Study participants consist of families giving birth at six NYP hospitals in New York City.

The researchers published their findings so far in the Journal of the American Medical Association (JAMA), titled, “Expanded Newborn Screening Using Genome Sequencing for Early Actionable Conditions.”

“Genome sequencing allows us to detect things that cause serious illness and take action to prevent those illnesses in a significant number of children, not just a few rare cases. It should be instituted as the next standard for newborn screening because it can detect so much more than current methods,” said study co-author Joshua Milner, MD (above), chief of allergy, immunology, and rheumatology services at NewYork-Presbyterian/Columbia University Irving Medical Center, in a press release. Study finding suggest genetic sequencing can be more effective than clinical laboratory screening tests for early detection of genetic disorders. (Photo copyright: Columbia University.)

GUARDIAN Study Details

For the pilot study, the researchers sought consent from 5,555 families, with 4,000 (72%) agreeing to participate. The babies studied were born between September 2022 and July 2023. At that time, the researchers screened for 156 treatable conditions. Parents could also choose to add a panel of 99 neurodevelopmental disorders that do not have treatments, but where “affected children may benefit from early intervention,” the press release notes.

The total—255 genetic tests—included the 50 conditions in the standard Newborn Screening Program as a quality control, principal investigator Wendy Chung, MD, PhD, told Healio.

Among the 4,000 participants, 147 children (3.7%) screened positive for one of the conditions. Further testing confirmed diagnoses in 120 children. “Only 10 of these children were detected through standard screening,” the Columbia press release states.

The vast majority—92 of 120 children—were diagnosed with glucose-6-phosphate dehydrogenase (G6PD) deficiency. “G6PD is not included in traditional screening but individuals with G6PD deficiency can have moderate to life-threatening reactions to certain foods and medications which can easily be prevented by avoiding them,” the press release notes.

Screening for Previously Unscreened Treatable Disorders

The New York State Department of Health mandates free Newborn Screening (NBS) in which a blood sample is collected for testing, generally 24 to 36 hours after birth. The test screens for 50 disorders.

Genome sequencing, however, “offers an additional method to improve screening for conditions already included in NBS and to add those that cannot be readily screened because there is no biomarker currently detectable in dried blood spots,” the GUARDIAN researchers wrote in JAMA.

In the GUARDIAN study, families planning to give birth at an NYP hospital can authorize the researchers to perform genome sequencing of the same dried blood spots to screen for additional pre-selected genetic conditions. At present, the study screens for more than 450 conditions, according to the study website.

“It would be prohibitive to screen for all these diseases with standard testing, but with genomic screening, there’s minimal extra cost when adding a condition,” said study co-author Jordan Orange MD, PhD, chair of pediatrics at Columbia University’s Vagelos College of Physicians and Surgeons and physician-in-chief of NewYork-Presbyterian’s Morgan Stanley Children’s Hospital, in the Columbia press release. “We can screen for treatable disorders that we never thought of screening for before.”

GeneDX, which performs the genomic sequencing for GUARDIAN, issued a press release in which it listed other conditions that are not part of the standard screening. These include Long QT syndrome, which the company described as “a rare heart condition that may cause Sudden Infant Death Syndrome (SIDS) and can be treated with beta-blockers.”

GUARDIAN also detected conditions that came up as false negatives in the standard screening, Chung told Healio. One baby had a genetic variant that causes severe combined immunodeficiency disorder (SCID), a rare and often-fatal condition. Chung said that the genomic sequencing identified the condition while the standard newborn screening missed it.

“We know that a bone marrow transplant is a cure for these children, but safety and success are the highest when the transplant occurs in the first few months of life, before the child starts developing infections or other symptoms,” Milner said in the Columbia press release. “Only because of the genomic screening were we able to identify this child in time.”

Excluding the G6PD cases, the positive screening rate was 0.6%, twice the rate of standard screening. As of last November, more than 12,000 babies had been enrolled in the study. The researchers hope to enroll 100,000.

Advances in Genomic Sequencing Bring Benefits to NBS

“In my practice, I’ve seen many patients who’ve spent years going from doctor to doctor with symptoms that no one can explain. But by the time they receive a diagnosis, the window to best manage the disease has usually passed,” said Chung in the Columbia University press release.

Looking ahead, Chung told Healio that she’d like to expand outside of New York, “in part for generalizability to demonstrate that this is something that could be done with our national public health newborn screening system.”

She’d also like to cut the turnaround time from the current three weeks to one week, she said. And she’d like to drive down the cost.          

“Families and pediatricians don’t need to go through those diagnostic odysseys anymore with the genomic technology we now have. We can make the diagnosis at birth,” she said.

The GUARDIAN study shows how advances in genetic testing are moving fast enough that the point has been reached where the classic clinical laboratory methodologies for newborn screening used for decades are becoming outmoded because of the superior performance/cost of genome sequencing. 

—Stephen Beale

Related Information:

In Pioneering Study, Gene Technology Outperforms Standard Newborn Screening Tests

Groundbreaking GUARDIAN Study Shows Benefits of Adding Genome Sequencing to Newborn Screening; Augments and Improves Standard Newborn Screening

Expanded Newborn Screening Using Genome Sequencing for Early Actionable Conditions

Feasibility of Expanded Newborn Screening Using Genome Sequencing for Early Actionable Conditions in a Diverse City

Should Genome Sequencing Be Standard for Newborns?

Scientists Revive and Characterize 13 Ancient “Zombie” Viruses Isolated from Siberian Permafrost

Viruses are between 27,000 to 48,500 years old and not dangerous, but researchers say thawing permafrost may one day release pathogens capable of infecting humans

Last fall, European researchers working with virologists and genetic scientists at the Aix-Marseille University in France reported having revived and characterized 13 previously unknown “zombie” viruses isolated from Siberian permafrost samples, including one that was almost 50,000 years old. This will be of particular interest to microbiologists and clinical laboratory managers since these organisms are new to science and may be precursors to infectious agents active in the world today.

The work of the European scientists demonstrates how advancements in genome sequencing and analysis of DNA data are becoming, faster, less expensive, and more precise. That’s good because the researchers warned that, should the permafrost continue to thaw, other previously dormant viruses could be released, posing potential risks for public health.

The scientists published their findings in the open-access journal Viruses titled, “An Update on Eukaryotic Viruses Revived from Ancient Permafrost.”

The pathogens isolated by the researchers are so-called “giant viruses” that infect Acanthamoeba, a commonly found genus of amoeba, and thus are not likely to pose an immediate health threat, the researchers wrote.

However, the scientists expressed concern. “We believe our results with Acanthamoeba-infecting viruses can be extrapolated to many other DNA viruses capable of infecting humans or animals. It is thus likely that ancient permafrost … will release these unknown viruses upon thawing,” they stated in their Viruses paper.

It’s unknown how long the viruses “could be infectious once exposed to outdoor conditions (UV light, oxygen, heat), and how likely they will be to encounter and infect a suitable host in the interval,” they added. However, “the risk is bound to increase in the context of global warming, in which permafrost thawing will keep accelerating, and more people will populate the Arctic in the wake of industrial ventures.”

Paulo Verardi, PhD

“In nature we have a big natural freezer, which is the Siberian permafrost,” virologist Paulo Verardi, PhD (above), head of the Department of Pathobiology and Veterinary Science at the University of Connecticut, told The Washington Post. “And that can be a little bit concerning.” However, “if you do the risk assessment, this is very low. We have many more things to worry about right now.” Nevertheless, clinical laboratories may want to remain vigilant. (Photo copyright: University of Connecticut.)

Extremely Old, Very Large Viruses

The newly discovered viruses were found in seven different permafrost samples. Radiocarbon dating determined that they had been dormant for 27,000 to 48,500 years. But viruses contained in permafrost could be even older, the researchers wrote, as the time limit is “solely dictated by the validity range of radiocarbon dating.”

In their Viruses paper, the researchers noted that most of the 13 viruses are “at a preliminary stage of characterization,” and others have been isolated in the research laboratory “but not yet published, pending their complete genome assembly, annotation, or detailed analysis.”

“Every time we look, we will find a virus,” study co-author Jean-Michel Claverie, PhD, told The Washington Post. “It’s a done deal. We know that every time we’re going to look for viruses—infectious viruses in permafrost—we are going to find some.”

Claverie is a professor emeritus of genomics and bioinformatics in the School of Medicine at Aix-Marseille Université in Marseille, France. He leads a university laboratory known for its work in “paleovirology,” and in 2003, discovered the first known giant virus, dubbed Mimivirus. The research team included scientists from Germany and Russia.

According to CNN, unlike regular viruses that generally require an electron microscope to be viewed, giant viruses can be seen under a standard light (optical) microscope. Claverie’s laboratory previously isolated giant viruses from permafrost in 2014 and 2015.

Protecting Against Accidental Infection

To demonstrate the infectious potential of the viruses, the researchers inserted the microbes into cultured amoeba cells, which the researchers describes as “virus bait,” The Washington Post reported. One advantage of using Acanthamoeba cultures is to maintain “biological security,” the researchers wrote in their paper.

“We are using [the amoeba’s] billion years of evolutionary distance with human and other mammals as the best possible protection against an accidental infection of laboratory workers or the spread of a dreadful virus once infecting Pleistocene mammals to their contemporary relatives,” the paper noted. “The biohazard associated with reviving prehistorical amoeba-infecting viruses is thus totally negligible compared to the search for ‘paleoviruses’ directly from permafrost-preserved remains of mammoths, woolly rhinoceros, or prehistoric horses.”

The paper cites earlier research noting the presence of bacteria in ancient permafrost samples, “a significant proportion of which are thought to be alive.” These include relatives of contemporary pathogens such as:

How Dangerous are Ancient Viruses?

“We can reasonably hope that an epidemic caused by a revived prehistoric pathogenic bacterium could be quickly controlled by the modern antibiotics at our disposal,” the researchers wrote, but “the situation would be much more disastrous in the case of plant, animal, or human diseases caused by the revival of an ancient unknown virus.”

However, according to The Washington Post, “Virologists who were not involved in the research said the specter of future pandemics being unleashed from the Siberian steppe ranks low on the list of current public health threats. Most new—or ancient—viruses are not dangerous, and the ones that survive the deep freeze for thousands of years tend not to be in the category of coronaviruses and other highly infectious viruses that lead to pandemics.”

Cornell University virologist Colin Parrish, PhD, President of the American Society for Virology, told The Washington Post that an ancient virus “seems like a low risk compared to the large numbers of viruses that are circulating among vertebrates around the world, and that have proven to be real threats in the past, and where similar events could happen in the future, as we still lack a framework for recognizing those ahead of time.”

Anthony Fauci, MD, former Director of the National Institute of Allergy and Infectious Diseases (NIAID), responded to an earlier study from Claverie’s lab by outlining all the unlikely events that would have to transpire for one of these viruses to cause a pandemic. “The permafrost virus must be able to infect humans, it must then [cause disease], and it must be able to spread efficiently from human to human,” he told The Washington Post in 2015. “This can happen, but it is very unlikely.”

Thus, clinical laboratories probably won’t see new diagnostic testing to identify ancient viruses anytime soon. But it’s always best to remain vigilant.

Stephen Beale

Related Information:

Scientists Have Revived a ‘Zombie’ Virus That Spent 48,500 Years Frozen in Permafrost

‘Zombie’ Viruses Are Thawing in Melting Permafrost Because of Climate Change

Ancient Dormant Viruses Found in Permafrost, Once Revived, Can Infect Amoeba

Scientists Revive 48,500-Year-Old ‘Zombie Virus’ Buried in Ice

Scientists Revived Ancient ‘Zombie Viruses’ Frozen for Eons in Siberia

Scientists Warn Long-Frozen ‘Zombie Virus’ Is ‘Public Health Threat’ Amid Thaw

Scientists Did Not Release a Zombie Plague by Reviving a Dormant Virus, but Their Warning of a Potential Public Health Crisis Is Legitimate

Stanford Medicine Scientists Sequence Patient’s Whole Genome in Just Five Hours Using Nanopore Genome Sequencing, AI, and Cloud Computing

And in less than eight hours, they had diagnosed a child with a rare genetic disorder, results that would take clinical laboratory testing weeks to return, demonstrating the clinical value of the genomic process

In another major genetic sequencing advancement, scientists at Stanford University School of Medicine have developed a method for rapid sequencing of patients’ whole human genome in as little as five hours. And the researchers used their breakthrough to diagnose rare genetic diseases in under eight hours, according to a Stanford Medicine news release. Their new “ultra-rapid genome sequencing approach” could lead to significantly faster diagnostics and improved clinical laboratory treatments for cancer and other diseases.

The Stanford Medicine researchers used nanopore sequencing and artificial intelligence (AI) technologies in a “mega-sequencing approach” that has redefined “rapid” for genetic diagnostics. The sequence for one study participant—completed in just five hours and two minutes—set the first Guinness World Record for the fastest DNA sequencing to date, the news release states.

The Stanford scientists described their new method for rapid diagnosis of genetic diseases in the New England Journal of Medicine (NEJM) titled, “Ultrarapid Nanopore Genome Sequencing in a Critical Care Setting.”

Euan Ashley, MD, PhD

“A few weeks is what most clinicians call ‘rapid’ when it comes to sequencing a patient’s genome and returning results,” said cardiovascular disease specialist Euan Ashley, MD, PhD (above), professor of medicine, genetics, and biomedical data science, at Stanford University in the news release. “The right people suddenly came together to achieve something amazing. We really felt like we were approaching a new frontier.” Their results could lead to faster diagnostics and clinical laboratory treatments. (Photo copyright: Stanford Medicine.)

.

Need for Fast Genetic Diagnosis 

In their NEJM paper, the Stanford scientists argue that rapid genetic diagnosis is key to clinical management, improved prognosis, and critical care cost savings.

“Although most critical care decisions must be made in hours, traditional testing requires weeks and rapid testing requires days. We have found that nanopore genome sequencing can accurately and rapidly provide genetic diagnoses,” the authors wrote.

To complete their study, the researchers sequenced the genomes of 12 patients from two hospitals in Stanford, Calif. They used nanopore genome sequencing, cloud computing-based bioinformatics, and a “custom variant prioritization.”

Their findings included:

  • Five people received a genetic diagnosis from the sequencing information in about eight hours.
  • Diagnostic rate of 42%, about 12% higher than the average rate for diagnosis of genetic disorders (the researchers noted that not all conditions are genetically based and appropriate for sequencing).
  • Five hours and two minutes to sequence a patient’s genome in one case.
  • Seven hours and 18 minutes to sequence and diagnose that case.

How the Nanopore Process Works

To advance sequencing speed, the researchers used equipment by Oxford Nanopore Technologies with 48 sequencing units called “flow cells”—enough to sequence a person’s whole genome at one time.

The Oxford Nanopore PromethION Flow Cell generates more than 100 gigabases of data per hour, AI Time Journal reported. The team used a cloud-based storage system to enable computational power for real-time analysis of the data. AI algorithms scanned the genetic code for errors and compared the patients’ gene variants to variants associated with diseases found in research data, Stanford explained.

According to an NVIDIA blog post, “The researchers accelerated both base calling and variant calling using NVIDIA GPUs on Google Cloud. Variant calling, the process of identifying the millions of variants in a genome, was also sped up with NVIDIA Clara Parabricks, a computational genomics application framework.”

Rapid Genetic Test Produces Clinical Benefits

“Together with our collaborators and some of the world’s leaders in genomics, we were able to develop a rapid sequencing analysis workflow that has already shown tangible clinical benefits,” said Mehrzad Samadi, PhD, NVIDIA Senior Engineering Manager and co-author of the NEJM paper, in the blog post. “These are the kinds of high-impact problems we live to solve.”

In their paper, the Stanford researchers described their use of the rapid genetic test to diagnose and treat an infant who was experiencing epileptic seizures on arrival to Stanford’s pediatric emergency department. In just eight hours, their diagnostic test found that the infant’s convulsions were attributed to a mutation in the gene CSNK2B, “a variant and gene known to cause a neurodevelopmental disorder with early-onset epilepsy,” the researchers wrote.

“By accelerating every step of this process—from collecting a blood sample to sequencing the whole genome to identifying variants linked to diseases—[the Stanford] research team took just hours to find a pathogenic variant and make a definitive diagnosis in a three-month-old infant with a rare seizure-causing genetic disorder. A traditional gene panel analysis ordered at the same time took two weeks to return results,” AI Time Journal reported.

New Benchmarks

The Stanford research team wants to cut the sequencing time in half. But for now, the five-hour rapid whole genome sequence can be considered by clinical laboratory leaders, pathologists, and research scientists a new benchmark in genetic sequencing for diagnostic purposes.

Stories like Stanford’s rapid diagnosis of the three-month old patient with epileptic seizures, point to the ultimate value of advances in genomic sequencing technologies.

Donna Marie Pocius

Related Information:

Fastest DNA Sequencing Technique Helps Undiagnosed Patients Find Answers in Mere Hours

Ultrarapid Nanopore Genome Sequencing in a Critical Care Setting

Stanford Researchers Use AI to Sequence and Analyze DNA in Five Hours

World Record-Setting DNA Sequencing Technique Helps Clinicians Rapidly Diagnose Critical Care Patients

Ultima Genomics Delivers the $100 Genome

;