News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Experimental Low-Cost Blood Test Can Detect Multiple Cancers, Researchers Say

Test uses a new ultrasensitive immunoassay to detect a known clinical laboratory diagnostic protein biomarker for many common cancers

Researchers from Mass General Brigham, the Dana-Farber Cancer Institute, Harvard University’s Wyss Institute and other institutions around the world have reportedly developed a simple clinical laboratory blood test that can detect a common protein biomarker associated with multiple types of cancer, including colorectal, gastroesophageal, and ovarian cancers.

Best of all, the researchers say the test could provide an inexpensive means of early diagnosis. This assay could also be used to monitor how well patients respond to cancer therapy, according to a news release.

The test, which is still in experimental stages, detects the presence of LINE-1 ORF1p, a protein expressed in many common cancers, as well as high-risk precursors, while having “negligible expression in normal tissues,” the researchers wrote in a paper they published in Cancer Discovery titled, “Ultrasensitive Detection of Circulating LINE-1 ORF1p as a Specific Multicancer Biomarker.”

The protein had previously been identified as a promising biomarker and is readily detectable in tumor tissue, they wrote. However, it is found in extremely low concentrations in blood plasma and is “well below detection limits of conventional clinical laboratory methods,” they noted.

To overcome that obstacle, they employed an ultra-sensitive immunoassay known as a Simoa (Single-Molecule Array), an immunoassay platform for measuring fluid biomarkers.

“We were shocked by how well this test worked in detecting the biomarker’s expression across cancer types,” said lead study author gastroenterologist Martin Taylor, MD, PhD, Instructor in Pathology, Massachusetts General Hospital and Harvard Medical School, in the press release. “It’s created more questions for us to explore and sparked interest among collaborators across many institutions.”

Kathleen Burns, MD, PhD

“We’ve known since the 1980s that transposable elements were active in some cancers, and nearly 10 years ago we reported that ORF1p was a pervasive cancer biomarker, but, until now, we haven’t had the ability to detect it in blood tests,” said pathologist and study co-author Kathleen Burns, MD, PhD (above), Chair of the Department of Pathology at Dana-Farber Cancer Institute and a Professor of Pathology at Harvard Medical School, in a press release. “Having a technology capable of detecting ORF1p in blood opens so many possibilities for clinical applications.” Clinical laboratories may soon have a new blood test to detect multiple types of cancer. (Photo copyright: Dana-Farber Cancer Institute.)

Simoa’s Advantages

In their press release, the researchers described ORF1p as “a hallmark of many cancers, particularly p53-deficient epithelial cancers,” a category that includes lung, breast, prostate, uterine, pancreatic, and head and neck cancers in addition to the cancers noted above.

“Pervasive expression of ORF1p in carcinomas, and the lack of expression in normal tissues, makes ORF1p unlike other protein biomarkers which have normal expression levels,” Taylor said in the press release. “This unique biology makes it highly specific.”

Simoa was developed at the laboratory of study co-author David R. Walt, PhD, the Hansjörg Wyss Professor of Bioinspired Engineering at Harvard Medical School, and Professor of Pathology at Harvard Medical School and Brigham and Women’s Hospital.

The Simoa technology “enables 100- to 1,000-fold improvements in sensitivity over conventional enzyme-linked immunosorbent assay (ELISA) techniques, thus opening the window to measuring proteins at concentrations that have never been detected before in various biological fluids such as plasma or saliva,” according to the Walt Lab website.

Simoa assays take less than two hours to run and require less than $3 in consumables. They are “simple to perform, scalable, and have clinical-grade coefficients of variation,” the researchers wrote.

Study Results

Using the first generation of the ORF1p Simoa assay, the researchers tested blood samples of patients with a variety of cancers along with 406 individuals, regarded as healthy, who served as controls. The test proved to be most effective among patients with colorectal and ovarian cancer, finding detectable levels of ORF1p in 58% of former and 71% of the latter. Detectable levels were found in patients with advanced-stage as well as early-stage disease, the researchers wrote in Cancer Discovery.

Among the 406 healthy controls, the test found detectable levels of ORF1p in only five. However, the control with the highest detectable levels, regarded as healthy when donating blood, “was six months later found to have prostate cancer and 19 months later found to have lymphoma,” the researchers wrote.

They later reengineered the Simoa assay to increase its sensitivity, resulting in improved detection of the protein in blood samples from patients with colorectal, gastroesophageal, ovarian, uterine, and breast cancers.

The researchers also employed the test on samples from 19 patients with gastroesophageal cancer to gauge its utility for monitoring therapeutic response. Although this was a small sample, they found that among 13 patients who had responded to therapy, “circulating ORF1p dropped to undetectable levels at follow-up sampling.”

“More Work to Be Done”

The Simoa assay has limitations, the researchers acknowledged. It doesn’t identify the location of cancers, and it “isn’t successful in identifying all cancers and their subtypes,” the press release stated, adding that the test will likely be used in conjunction with other early-detection approaches. The researchers also said they want to gauge the test’s accuracy in larger cohorts.

“The test is very specific, but it doesn’t tell us enough information to be used in a vacuum,” Walt said in the news release. “It’s exciting to see the early success of this ultrasensitive assessment tool, but there is more work to be done.”

More studies will be needed to valid these findings. That this promising new multi-cancer immunoassay is based on a clinical laboratory blood sample means its less invasive and less painful for patients. It’s a good example of an assay that takes a proteomic approach looking for protein cancer biomarkers rather than the genetic approach looking for molecular DNA/RNA biomarkers of cancer.

—Stephen Beale

Related Information:

Ultrasensitive Blood Test Detects ‘Pan-Cancer’ Biomarker

New Blood Test Could Offer Earlier Detection of Common Deadly Cancers

Ultrasensitive Detection of Circulating LINE-1 ORF1p as a Specific Multicancer Biomarker

Noninvasive and Multicancer Biomarkers: The Promise of LINE-1 Retrotransposons

LINE-1-ORF1p Is a Promising Biomarker for Early Cancer Detection, But More Research Is Needed

‘Pan-Cancer’ Found in Highly Sensitive Blood Test

For Early-State Lung Cancer Detection, GRAIL’s Experimental Clinical Laboratory Blood Screening Test Shows Promise

Silicon Valley startup is using gene sequencing to identify in the bloodstream free-floating genetic material shed by tumors

There has been plenty of excitement about the new diagnostic technologies designed to identify circulating tumor cells in blood samples. Now, a well-funded Silicon Valley startup has developed a blood test that it says holds promise for detecting early-stage lung and other cancers.

Though experimental, the screening test—which uses gene sequencing to identify in the bloodstream cancer-signaling genetic material shed by tumors—would be a boon for clinical laboratories and health networks. It also could play a role in advancing precision medicine treatments and drug therapies.

GRAIL, a Menlo Park, Calif., life sciences company, presented its initial findings at the 2018 American Society of Clinical Oncology Annual Meeting in Chicago. Its lung cancer data is part of GRAIL’s ongoing Circulating Cell-Free Genome Atlas (CCGA) study, which aims to enroll 15,000 participants and investigate 20 different types of cancers.

“We’re excited that the initial results for the CCGA study show it is possible to detect early-state lung cancer from blood samples using genome sequencing,” said lead study author Geoffrey Oxnard, MD, Dana-Farber Cancer Institute and Associate Professor of Medicine at Harvard Medical School, in a Dana-Farber news release.

“There is an unmet need globally for early-detection tests for lung cancer that can be easily implemented by healthcare systems,” lead study author Geoffrey Oxnard, MD (above), said in the Dana-Farber news release. “These are promising early results and the next steps are to further optimize the assays and validate the results in a larger group of people.” (Photo copyright: Dana-Farber Cancer Institute.)

According to the news release, researchers in this initial analysis explored the ability of three different prototype sequencing assays, each with 98% specificity, to detect lung cancer in blood samples:

“The initial results showed that all three assays could detect lung cancer with a low rate of false positives (in which a test indicates a person has cancer when there is no cancer),” the Dana-Farber news release noted.

Identifying Disease Risk Before Symptoms Appear

Screening tests help identify individuals who are not displaying disease symptoms but may be at high risk for developing a disease. GRAIL’s goal is to develop a test with a specificity of 99% or higher. This means no more than one out of 100 people would receive a false-positive.

Otis Brawley, MD, Chief Medical and Scientific Officer at the American Cancer Society, points out that specificity is important when developing a population-based screening test that ultimately would be given to large portions of the general public based on age, medical history, or other factors.

“I am much more concerned about specificity than sensitivity [true positive rate], and [GRAIL] exhibited extremely high specificity,” Brawley told Forbes. “You don’t want a lot of false alarms.”

Some cancer experts have a wait-and-see reaction to GRAIL’s initial results, due in part to the small sample size included in the sub-study. Benjamin Davies, MD, Associate Professor of Urology at the University of Pittsburgh School of Medicine, and an expert on prostate cancer screening, told Forbes the early data was “compelling,” but the number of patients in the study was too small to generate excitement.

Oxnard, however, believes the initial results validate the promise of GRAIL’s blood screening test project.

“I was a skeptic two years ago,” Oxnard, a GRAIL consultant, told Forbes. “I think these data need to put a lot of the skepticism to rest. It can be done. This is proof you can find cancer in the blood, you can find advanced cancer, therefore this has legs. This has a real future. It’s going to be many steps down the line, but this deserves further investigation and should move forward.”

Next Steps

Researchers next plan to verify the initial results in an independent group of 1,000 CCGA participants as part of the same sub-study. They then will attempt to optimize the assays before validating them in a larger data set from CCGA, the Dana-Farber news release explained.

Illumina, a sequencing-technology developer, formed GRAIL in 2016, with participating investments from Bill Gates, Bezos Expeditions and Sutter Hill Ventures. Since then, GRAIL has attracted other high-flying investors, including Amazon, Merck, Johnson and Johnson, and Bristol-Myers Squibb.

Forbes notes that as of 2018 GRAIL has raised $1.6 billion in venture capital and has a $3.2 billion valuation, according to private market data firm Pitchbook. Last year, GRAIL merged with Hong Kong-based Cirina Ltd., a privately held company also focused on the early detection of cancer.

While GRAIL’s projects hold promise, anatomic pathologists and clinical laboratories may be wise to temper their enthusiasm until more research is done.

“We all would like to dream that someday you’d be able to diagnose cancer with a blood test,” Eric Topol, MD, Executive Vice President and Professor of Molecular Medicine at Scripps Research, told Forbes. Topol says he’s “encouraged” by GRAIL’s methodical approach, but warns: “We’re at the earliest stage of that.”

—Andrea Downing Peck

Related Information:

Biotech Firm GRAIL Takes the First Steps in Its Quest for a Blood Test for Cancer

Blood Test Shows Potential for Early Detection of Lung Cancer

Detection via Blood-Based Screening

Illumina Launches GRAIL, Focused on Blood-Based Cancer Screening

GRAIL and Cirina Combine to Create Global Company Focused on Early Detection of Cancer

Recent Acquisitions by Roche Highlight the Importance of Structured Data and Concerns for Diagnostics Providers and Pathology Laboratories

Data generated by medical laboratories and diagnostic providers takes an increasing role in treatment and precision medicine and allows greater analysis of data and integration of data into the care process

Most anatomic pathologists recognize that the unstructured data that makes up most pathology reports also represents a barrier to more sophisticated use of the information in those pathology reports. One solution is for pathology groups to adopt synoptic reporting as a way to get a pathology report’s essential data into structured fields.

The healthcare marketplace recognizes the value of structured data. In 2012, venture capitalists funded a new company called Flatiron Health. Flatiron’s goal was to access the medical records of cancer patients specifically to extract the relevant—and generally unstructured—data and put it into a structured database. This structured database could then be used to support both research and clinical care for cancer patients.

How valuable is structured healthcare data? Just this February, Roche paid $1.9 billion to acquire Flatiron. At that point, Flatiron had assembled information about the health records of two million cancer patients.

But Roche (ROG.S), recognizing the value of data, was not done. In July, it entered into an agreement to pay $2.4 billion for the remaining shares of cancer-testing company Foundation Medicine that it did not own. Foundation Medicine sequences tumors and uses that genetic data to assist physicians in diagnosing cancer, making treatment decisions, and identifying cancer patients who qualify for specific clinical trials.

Anatomic pathologists play a central role in the diagnosis, treatment, and monitoring of cancer patients. It behooves the pathology profession to recognize that generating, storing, analyzing, and reporting the data generated from examinations of tumor biopsies is a critical success factor moving forward. Otherwise, other players and stakeholders will move past the pathology profession and stake their own claim to capturing, owning, and using that data to add value in patient care.

How Lack of Standards Impact Transfer of Patient Data

DATAMARK Inc., a business process outsourcing (BPO) company headquartered in El Paso, Texas, reports that analysts from Merrill Lynch, Gartner, and IBM estimate unstructured data comprises roughly 80% of the information in the average electronic medical record. This data could be the key to improving outcomes, tailoring precision medicine treatments, or early diagnosis of chronic diseases.

From narrative descriptions of biopsies to dictated entries surrounding preventative care appointments, these entries hold data that might have value but are difficult to collate, organize, or analyze using software or reporting tools.

To further complicate matters, each service provider in a patient’s chain of care might hold different standards or preferred methods for recording data.

“At this point, [standards] are not to a level that helps with the detailed clinical data that we need for the scientific questions we want to ask,” Nikhil Wagle, MD, Assistant Professor of Medicine, Dana-Farber Cancer Institute, Harvard Medical School, and Associate Member, Broad Institute, told the New York Times.

An oncologist at the Dana Farber Cancer Institute in Boston, Wagle and his colleagues are creating a database of metastatic breast cancer patients capable of linking medical records, treatments, and outcomes with their genetic backgrounds and the genetics of their tumors. Despite best efforts, they’ve only collected 450 records for 375 patients in 2.5 years.

Nikhil Wagle, MD

Nikhil Wagle, MD (above), Assistant Professor of Medicine, Dana-Farber Cancer Institute, Harvard Medical School, and Associate Member, Broad Institute, is building databases that link patient outcomes and experiences with their EHRs. But sharing that information has proved problematic, he told the New York Times. “Patients are incredibly engaged and excited,” he said, “[But] right now there isn’t a good solution. Even though the patients are saying, ‘I have consented for you to obtain my medical records,’ there is no good way to get them.” (Photo copyright: Dana-Farber Cancer Institute.)


Additionally, once records are obtained, the information—sometimes spanning hundreds of faxed pages—must still be processed into data compatible with Dana-Farber’s database. And updating and maintaining the database requires a full-time staff of experts that must review the information and accurately enter it as required.

When critical concerns arise—such as a cancer diagnosis—information that could yield valuable clues about treatment options and improve outcomes might be held in any number of data silos in any number of formats.

This doesn’t account for the complexity of organizing such information for researchers who are developing new treatments, applying data to less targeted approaches, or dealing with privacy concerns between care providers.

Moving forward, those who can create and interact with data in a way that requires minimal human touch to make it suitable for analysis, further processing, or archiving, could communicate data more effectively and glean value from the growing trove of data silos created by laboratories around the world.  

Big Pharma Making Big Bets on Structured Data

These are all the reasons why the recent moves by Roche show the importance and perceived value of structured medical records data as it takes an increasingly important role in precision medicine treatments and diagnosis.

With its acquisition of both Flatiron Health and Foundation Medicine, Roche has secured the ability to generate data, convert said data into a structured format to drive decisions, improve core data-related services, and promote the value of their offerings. This positions Roche to maximize the value of its data for internal use and marketing to researchers and other interested parties.

For clinical laboratories, pathology groups, and other diagnostics providers generating untold amounts of data daily, this highlights a critical opportunity to stay ahead of future trends and position themselves as valuable sources of information as healthcare data continues to play an essential role in modern healthcare.

—Jon Stone

Related Information:

New Cancer Treatments Lie Hidden under Mountains of Paperwork

Unstructured Data in Electronic Health Record Systems: Challenges and Solutions

Pharma Giant Roche Just Made a $2.4 Billion Bet on Cancer Data

Roche to Buy Flatiron Health for $1.9 Billion to Expand Cancer Care Portfolio

Why Drug Giant Roche’s $1.9 Billion Deal to Buy Data Startup Flatiron Health Matters

Roche Acquires the Outstanding Shares of Foundation Medicine for $2.4Bn

New Solutions for Unstructured Data May Help with Clinical Laboratory and Anatomic Pathology Data

Genomic Study Reveals Role of Human Papillomavirus in Cervical Cancer and Identifies Novel Therapeutic Targets for the Disease

Findings may help physicians tailor cervical cancer therapies to specific gene mutations and improve the accuracy of diagnostic screening tests for this disease

New scientific knowledge about the role of human papillomavirus (HPV) in the growth of cervical cancer is creating excitement within the medical community. Among other things, these findings could encourage more widespread vaccination against HPV. That in turn would lead to reduced Pap smear testing by pathology laboratories over time.

For these reasons, cytopathologists and cytotechnologists will be particularly interested in the research findings that were published as a first-ever, international genomic study of cervical cancer, which was published online December 25, 2013, at Researchers discovered that the location where HPV integrates itself into the human genome, is where it causes amplified gene expression that promotes and elevates mutated gene activity that may cause cervical cancer to develop. (more…)

Whole-Genome Scanning Reveals Mutations in Melanoma DNA ‘Dark Matter’ and May Offer New Source for Clinical Pathology Laboratory Tests

New discoveries demonstrate important advantages of whole-genome sequencing in investigations of DNA ‘dark matter’ and shed light on the possible origins of cancer

Whole-genome scanning of cancer cells revealed significant mutations in the “dark matter” areas of melanoma DNA. This represents a leap forward in the basic science of cancer. Easier access to whole-genome sequencing means that researchers are poised to mine a rich vein of data that will shine a light on how cells malfunction.

For pathologists and clinical laboratory managers, these new research findings hold the promise to open up another approach to using the data in whole human genomes for diagnostic and therapeutic purposes. It also shows one more practical outcome from the rapidly falling cost of sequencing DNA. (more…)