News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Mount Sinai Health System Study Finds Use of AI-Enabled Monitoring System Improves Use of Blood During Childbirth

Study suggests AI-enabled technology can help clinical laboratories and hospital blood banks save thousands of dollars annually on expensive blood products

Artificial intelligence may prove to be a useful tool in helping hospitals better manage utilization of blood products. That’s one conclusion from a newly-published study done at New York’s Icahn School of Medicine at Mount Sinai. If so, this is a technology improvement that would be welcomed by blood bankers and clinical laboratory managers who must manage the cost and utilization of blood products.

There’s no way around it—blood is expensive. A typical 400- to 600-bed hospital likely budgets upwards of one million dollars annually just for blood products. Almost universally, in hospitals the medical laboratory manages the blood bank. This is where medical technologists trained in blood banking test patients and test blood to ensure whole blood units, or other blood products such as platelets, match and will not trigger a negative reaction when administered to the patient.

When left unmanaged, the cost and utilization of blood bank products can put the budgets of hospital medical laboratories in the red. Hospitals also invest a great deal of money training surgeons to accurately assess the procedure and order the correct amount of blood components prior to surgery.

Therefore, new artificial intelligence (AI) technology that helps pinpoint patients’ blood loss during childbirth will be of interest to blood bankers and hospital laboratory administrators.

Can AI Help Clinical Labs Improve Utilization of Blood Products in Hospitals?

Physicians at the Icahn School of Medicine at Mount Sinai recently investigated whether “Quantifying blood loss” would improve the use of blood during human childbirth. They published the results of their study in the International Journal of Obstetric Anesthesia.

Their research into 7,618 deliveries (vaginal and cesarean) involved “An observational study comparing blood loss, management, and outcomes between two historical cohorts (August 2016 to January 2017 and August 2017 to January 2018) at an academic tertiary care center. Patients in the intervention group (second period) had blood loss quantified compared with visual estimation for controls,” the research paper notes.

The researchers concluded that “Quantifying blood loss may result in increased vigilance for vaginal and cesarean delivery. We identified an association between quantifying blood loss and improved identification of postpartum hemorrhage, patient management steps, and cost savings.”

The researchers, according to a press release, employed the Triton AI-enabled platform from Gauss Surgical, a silicon valley-based health technology company, to “monitor blood loss in all deliveries (vaginal and cesarean, n=3807) at Mount Sinai Hospital from August 2017 through January 2018 to support the institution’s stage-based hemorrhage protocol.”

The researchers found that use of a monitoring system was associated with earlier postpartum hemorrhage intervention and annual cost savings of $172,614 in lab costs and $36,614 in blood bank costs.

Daniel Katz, MD (above), Director of Obstetric Anesthesia Research and Associate Professor Anesthesiology, Perioperative and Pain Medicine, at Mount Sinai Hospital in New York, said in the news release, “This study demonstrates that efficiently obtaining accurate, real-time blood loss information is critical to the successful implementation of a stage-based hemorrhage protocol.” Katz was the study’s lead author. (Photo copyright: Mount Sinai Hospital.)

Measuring Blood Loss: The Eye versus AI

Gauss has secured Food and Drug Administration (FDA) clearance for Triton and more than 50 US hospitals are using it. Triton provides, in real-time, images of blood-saturated surgical sponges and canisters and uses computer vision and machine learning to pinpoint blood loss, reported MD+DI.

Traditionally, physicians visually estimate blood loss during procedures. When they are off in their estimates of postpartum hemorrhage, harmful postpartum health complications and deaths can occur, the Mount Sinai researchers explained in their paper.

And although other vital signs—heart rate, rhythm, blood pressure, oxygen level, etc.— are monitored with equipment in the surgical suite, blood usage is not. 

“Blood loss in surgery has been an enigma for decades since the dawn of medicine,” Siddarth Satish, Founder and Chief Executive Officer of Gauss, told MD+DI. “We monitor many other vital signs in surgery, but ultimately there hasn’t been any direct indicator of a patient’s hemoglobin loss.”

Bleeding Better Recognized, Less Blood Transfusions

After the Mount Sinai researchers used the Triton system to monitor blood loss during 3,807 vaginal and cesarean deliveries from August 2017 to January 2018 at Mount Sinai Hospital, they compared their findings to 3,811 deliveries from August 2016 to January 2017, during which doctors relied solely on visual estimation of blood loss.

The study found the following, according to the news release:

  • Improved hemorrhage recognition in vaginal deliveries of 2.2% and cesarean sections of 12.6% compared to .5% and 6.4%, respectively;
  • Less blood transfusions needed (vaginal patients): 47% with Triton compared to 71%;
  • Reduced blood transfusion dose (cesarean section): 1.90 units with Triton compared to 2.52 units;
  • Cost savings: $209,228 a year (the total of aforementioned lab and blood bank costs).

“What we like about [Gauss] is that it somewhat embodies precision medicine in the sense that you’re using more precise tools of measurement in their first use case,” Garrett Vygantas, MD, MBA, Managing Director for OSF Ventures, the financing arm of OSF Healthcare, who also serves on Gauss Surgical’s board, told MD+DI.

Possible New Resource for Hospital Medical Laboratories

So, will AI quickly become an omnipresent overseer in surgical suites? Hardly. However, AI is in the early stages of finding places in healthcare where it can be useful.  “A lot of people are predicting that AI will play a huge role in healthcare … I think it’ll be ever-present. There will be a little bit of AI in everything you’re doing, but I think the actual practice of medicine in its truest form is going to carry forward,” Satish told Fierce Healthcare.

Hospital medical laboratories and blood blanks looking for new tools to manage blood use may want to look into AI-enabled systems like Triton. Saving money is not the only benefit. Less transfused blood is better for patient care as well. 

—Donna Marie Pocius

Related Information:

New Publication Concludes Gauss Surgical’s Triton System Associated with Earlier Postpartum Hemorrhage Intervention and Reduced Costs

The Association Between the Introduction of Quantitative Assessment of Postpartum Blood Loss and Institutional Changes in Clinical Practice: An Observational Study

Gauss Uses AI to Accurately Measure Blood Loss

Clinical Experience with the Implementation of Accurate Measurement of Blood Loss During Cesarean Delivery: Influences on Hemorrhage Recognition and Allogeneic Transfusion

Special Report: Gauss Surgical

Gauss Raises $20 Million in Series C from Northwell Health and Softbank Ventures Korea for AI-Enabled Platform for the Operating Room

Scientists in United Kingdom Manipulate DNA to Create a Synthetic Bacteria That Could Be Immune to Infections

Use of synthetic genetics to replicate an infectious disease agent is a scientific accomplishment that many microbiologists and clinical laboratory managers expected would happen

Microbiologists and infectious disease doctors are quite familiar with Escherichia coli (E. coli). The bacterium has caused much human sickness and even death around the globe, and its antibiotic resistant strains are becoming increasingly difficult to eradicate.

Now, scientists in England have created a synthetic “recoded” version of E. coli bacteria that is being used in a positive way—to fight disease. Their discovery is being heralded as an important breakthrough in the quest to custom-alter DNA to create synthetic forms of life that one day could be designed to fight specific infections, create new drugs, or produce tools to diagnose or treat disease.

Scientists worldwide working in the field of synthetic genomics are looking for ways to modify genomes in order to produce new weapons against infection and disease. This research could eventually produce methods for doctors—after diagnosing a patient’s specific strain of bacteria—to then use custom-altered DNA as an effective weapon against that patient’s specific bacterial infection.

This latest milestone is the result of a five-year quest by researchers at the Medical Research Council Laboratory of Molecular Biology (MRC-LMB) in Cambridge, England, to create a man-made version of the intestinal bacteria by redesigning its four-million-base-pair genetic code.

The MRC-LMB lab’s success marks the first time a living organism has been created with a compressed genetic code.

The researchers published their findings in the journal Nature.

Synthetic Genomics and Clinical Laboratories

Benjamin A. Blount, PhD, a postdoctoral research associate at Imperial College London, and Tom Ellis, PhD, Professor in Synthetic Genome Engineering at Imperial College London, praised the MRC-LMB team’s accomplishment in a subsequent Nature article.

“This is a landmark in the emerging field of synthetic genomics and finally applies the technology to the laboratory’s workhorse bacterium,” they wrote. “Synthetic genomics offers a new way of life, while at the same time moving synthetic biology towards a future in which genomes can be written to design.”

All known forms of life on Earth contain 64 codons—a specific sequence of three consecutive nucleotides that corresponds with a specific amino acid or stop signal during protein synthesis. Jason Chin, PhD, Program Lead at MRC-LMB, said biologists long have questioned why there are 20 amino acids encoded by 64 codons.

“Is there any function to having more than one codon to encode each amino acid?” Chin asked during an interview with the Cambridge Independent. “What would happen if you made an organism that used a reduced set of codons?”

The MRC-LMB research team took an important step toward answering that question. Their synthetic E. coli strain, dubbed Syn61, was recoded through “genome-wide substitution of target codons by defined synonyms.” To do so, researchers mastered a new piece-by-piece technique that enabled them to recode 18,214 codons to create an organism with a 61-codon genome that functions without a previously essential transfer RNA.

“Our synthetic genome implements a defined recoding and refactoring scheme–with simple corrections at just seven positions–to replace every known occurrence of two sense codons and a stop codon in the genome,” lead author Julius Fredens, PhD, a post-doctoral research associate at MRC, and colleagues, wrote in their paper.

Science Alert reports that the laboratory-created version of E. coli (above) “isn’t quite a dead ringer for its ancestor. The cells are a touch longer, and they reproduce 1.6 times slower. But the edited E. coli seems healthy and produces the same range and quantity of proteins as the non-edited versions.” (Photo copyright: Jason Chin/STAT.)

Joshua Atkinson, PhD, a postdoctoral research associate at Rice University in Houston, labeled the breakthrough a “tour de force” in the field of synthetic genomics. “This achievement sets a new world record in synthetic genomics by yielding a genome that is four times larger than the pioneering synthesis of the one-million-base-pair Mycoplasma mycoides genome,” he stated in Synthetic Biology.

“Synthetic genomics is enabling the simplification of recoded organisms; the previous study minimized the total number of genes and this new study simplified the way those genes are encoded.”

Manmade Bacteria That are Immune to Infections

Researchers from the J. Craig Venter Institute in Rockville, Maryland, created the first synthetic genome in 2010. According to an article in Nature, the Venter Institute successfully synthesized the Mycoplasma mycoides genome and used it “reboot” a cell from a different species of bacterium.

The MRC-LMB team’s success may prove more significant.

“This new synthetic E. coli should not be able to decode DNA from any other organism and therefore it should not be possible to infect it with a virus,” the MRC-LMB stated in a news release heralding the lab’s breakthrough. “With E. coli already being an important workhorse of biotechnology and biological research, this study is the first time any commonly used model organism has had its genome designed and fully synthesized and this synthetic version could become an important resource for future development of new types of molecules.”

Because the MRC-LMB team was able to remove transfer RNA and release factors that decode three codons from the E. coli bacteria, their achievement may be the springboard to designing manmade bacteria that are immune to infections or could be turned into new drugs.

“This may enable these codons to be cleanly reassigned and facilitate the incorporation of multiple non-canonical amino acids. This greatly expands the scope of using non-canonical amino acids as unique tools for biological research,” the MRC-LMB news release added.

Though synthetic genomics impact on clinical laboratory diagnostics is yet to be known, medical laboratory leaders should be mindful of the potential for rapid innovation in this field as proof-of-concept laboratory innovations are translated into real-world applications.

—Andrea Downing Peck

Related Information:

Scientists Redesigned an Entire Genome to Create the Most Synthetic Life Form Yet

World’s First Synthetic Organism with Fully Recoded DNA Is Created at MRC LMB in Cambridge

Creating an Entire Bacterial Genome with a Compressed Genetic Code

Total Synthesis of Escherichia Coli with a Recoded Genome

Construction of an Escherichia Coli Genome with Fewer Codons Sets Records

Life Simplified: Recompiling a Bacterial Genome for Synonymous Codon Compression

Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome

Cambridge University Researchers Recode E. Coli DNA to Create Living, Reproducing Bacteria with Entirely Synthetic DNA

Clinical Laboratory Leaders Agree: Showing Value Is More Important than Ever as Healthcare Transitions Away from Fee-for Service Reimbursement

How medical laboratories can show value through process improvement methods and analytics will be among many key topics presented at the upcoming Lab Quality Confab conference

Quality management is the clinical laboratory’s best strategy for surviving and thriving in this era of shrinking lab budgets, PAMA price cuts, and value-based payment. In fact, the actions laboratories take in the next few months will set the course for their path to clinical success and financial sustainability in 2020 and beyond.

But how do medical laboratory managers and pathologists address these challenges while demonstrating their lab’s value? One way is through process improvement methods and another is through the use of analytics.

Clinical pathologists, hospital lab leaders, and independent lab executives have told Dark Daily that the trends demanding their focus include:

  • Ensuring needed resources and appropriate tests, while the lab is scrutinized by insurance companies and internally by hospital administration;
  • PAMA’s (Protecting Access to Medicare Act of 2014) effects on reimbursement;
  • Consumers’ demand for lower cost and better access to quality healthcare;
  • Serving patients in a wider continuum of care; and
  • Collaborating instead of competing with other labs in the market.

“The laboratory and resources we are given are being scrutinized in a different way than they have been historically,” said Christopher Doern, PhD, Director of Microbiology and Associate Professor of Pathology, Virginia Commonwealth University Health System (VCU Health) Medical College of Virginia, Richmond, in an exclusive interview with Dark Daily.

“Our impact on patient care, in many cases, is very indirect. So, it is difficult to point to outcomes that occur. We know things we do matter and change patient care, but objectively showing that is a real struggle. And we are being asked to do more than we ever had before, and those are the two big things that keep me up at night these days,” he added.

This is where process improvement methods and analytics are helping clinical laboratories understand critical issues and find opportunities for positive change.

“You need to have a strategy that you can adapt to a changing landscape in healthcare. You have to use analytics to guide your progress and measure your success,” Patricia Nortmann, System Director of Laboratory Services at St. Elizabeth Healthcare, Erlanger, Ky., told Dark Daily.

Clinical Laboratories Can Collaborate Instead of Compete

Prior to a joint venture with TriHealth in Cincinnati, St. Elizabeth lab leaders used data to inform their decision-making. Over about 12 years preceding the consolidation of labs they:

  • Centralized the outreach core lab;
  • Installed front-end automation in chemistry;
  • Standardized the laboratory information system (LIS) and analyzer platforms across five affiliate hospitals; and
  • Implemented front-end automation outside the core area and in the microbiology lab.

“We are now considered a regional reference lab in the state of Kentucky for two healthcare organizations—St. Elizabeth and TriHealth,” Nortmann said. 

Thanks to these changes, the lab more than doubled its workload, growing from 2.1 million to 4.3 million outreach tests in the core laboratory, she added.

Christopher Doern, PhD (left), Director of Microbiology and Associate Professor of Pathology at Virginia Commonwealth University Health System; Patricia Nortmann (center), System Director of Laboratory Services at St. Elizabeth Healthcare; and Joseph Cugini (right), Manager Client Solutions at Health Network Laboratories, will present practical solutions and case studies in quality improvement and analytics for clinical laboratory professionals at the 13th Annual Lab Quality Confab, October 15-16, 2019, at the Hyatt Regency in Atlanta, Ga. (Photo copyright: The Dark Report.)

Using Analytics to Test the Tests

Clinical laboratories also are using analytics and information technology (IT) to improve test utilization.

At VCH Health, Doern said an analytics solution interfaces with their LIS, providing insights into test orders and informing decisions about workflow. “I use this analytics system in different ways to answer different questions, such as:

  • How are clinicians using our tests?
  • When do things come to the lab?
  • When should we be working on them? 

“This is important for microbiology, which is a very delayed discipline because of the incubation and growth required for the tests we do,” he said.

Using analytics, the lab solved an issue with Clostridium difficile (C diff) testing turnaround-time (TAT) after associating it with specimen transportation.

Inappropriate or duplicate testing also can be revealed through analytics. A physician may reconsider a test after discovering another doctor recently ordered the same test. And the technology can guide doctors in choosing tests in areas where the related diseases are obscure, such as serology.  

Avoiding Duplicate Records While Improving Payment

Another example of process improvement is Health Network Laboratories (HNL) in Allentown, Pa. A team there established an enterprise master patient index (EMPI) and implemented digital tools to find and eliminate duplicate patient information and improve lab financial indicators.

“The system uses trusted sources of data to make sure data is clean and the lab has what it needs to send out a proper bill. That is necessary on the reimbursement side—from private insurance companies especially—to prevent denials,” Joseph Cugini, HNL’s Manager Client Solutions, told Dark Daily

HNL reduced duplicate records in its database from 23% to under one percent. “When you are talking about several million records, that is quite a significant improvement,” he said.

Processes have improved not only on the billing side, but in HNL’s patient service centers as well, he added. Staff there easily find patients’ electronic test orders, and the flow of consumers through their visits is enhanced.

Learn More at Lab Quality Confab Conference

Cugini, Doern, and Nortmann will speak on these topics and more during the 13th Annual Lab Quality Confab (LQC), October 15-16, 2019, at the Hyatt Regency in Atlanta, Ga. They will offer insights, practical knowledge, and case studies involving Lean, Six Sigma, and other process improvement methods during this important 2-day conference, a Dark Daily news release notes.

Register for LQC, which is produced by Dark Daily’s sister publication The Dark Report, online at https://www.labqualityconfab.com/register, or by calling 512-264-7103.   

—Donna Marie Pocius

Related Information:

13th Annual Lab Quality Confab October 15-16, 2019. Hyatt Regency, Atlanta, Ga.

Clinical Laboratory Innovators in Lean, Six Sigma, and Process Improvement to Gather in Atlanta October 15-16, 2019

Australia’s HPV Vaccination Program Could Eliminate Cervical Cancer If Its National HPV Vaccination and Screening Programs Remain on Current Pace

CDC estimates that 92% of cancers caused by HPV could be eliminated in the US if HPV vaccination recommendations in this country are followed

Medical laboratories in the United States once processed as many as 55-million Pap tests each year. However, the need for cervical cancer screening tests is diminishing. That’s primarily because the human papilloma virus (HPV) vaccination effectively eliminates new cases of cervical cancer. At least, that’s what’s happening in Australia.

When it was introduced in 2007, Australia’s nationwide publicly-funded HPV vaccination program only included girls, but was extended to boys in 2013. Today, it is being credited with helping slash the country’s cervical cancer rates.

Research published in The Lancet Public Health (Lancet) predicts cervical cancer could be eliminated in Australia by 2028 if current vaccination rates and screening programs continue. Cervical cancer would be classified as effectively eliminated once there are four or fewer new cases per 100,000 women each year. These developments will be of interests to pathologists and cytotechnologists in the United States.

“From the beginning, I think the [Australian] government successfully positioned the advent of HPV vaccination as a wonderful package that had a beneficial effect for the population,” Karen Canfell, PhD, Director, Cancer Research Division at Cancer Council New South Wales, Australia, and Adjunct Professor, University of Sydney, told the Texas Tribune. “It was celebrated for that reason, and it was a great public health success.”

In addition to high vaccination rates, the Lancet study notes that last year Australia transitioned from cytology-based cervical screening every two years for women aged 18 to 69 years, to primary HPV testing every five years for women aged 25 to 69 and exit testing for women aged 70 to 74 years.

“Large-scale clinical trials and detailed modelling suggest that primary HPV screening is more effective at detecting cervical abnormalities and preventing cervical cancer than screening with cytology at shorter intervals,” the Lancet study states.

The incidence of cervical cancer in Australia now stands at seven cases per 100,000. That’s about half the global average. The country is on pace to see cervical cancer officially considered a “rare” cancer by 2020, when rates are projected to drop to fewer than six new cases per 100,000 women.

US Cervical Cancer Rates

In Texas, meanwhile, the state’s failure to embrace HPV vaccination is being blamed for slowing potential improvements in cervical cancer rates. In 2007, Texas lawmakers rejected legislation that would have mandated girls entering sixth grade be vaccinated for HPV. The Texas Tribune reports that, in the decade that followed, vaccination rates remained stagnant with only about 40% of Texans between 13 and 17 years old having been vaccinated for HPV by 2017.

Though Texas has a similar size population as Australia, the state’s low vaccination rates have meant cervical cancer rates have shown little improvement. Statistics compiled by the federal Centers for Disease Control and Prevention (CDC) show that Texas’ age-adjusted rate of new cervical cancer cases sits at 9.2 per 100,000 women—unchanged since 2006.

Texas has the fifth highest rate of cervical cancer in the nation, according to the CDC.

Texas State Rep. Jessica Farrar, a Democrat from Houston, maintains Texas should have followed the example of Australia, which in 2007 began a publicly funded HPV vaccination program that has the country on the verge of eliminating cervical cancer by 2028. Texas rejected mandatory HPV vaccinations and now has one of the highest cervical cancer rates in the US. “This is a preventable disease, and we should and can be doing more,” she told the Texas Tribune. “Here we are 12 years later, and look where we could’ve been, but because of certain beliefs, we’re suffering from cancers that could have been avoided.” (Photo copyright: The Texas Tribune.)

Lois Ramondetta, MD, Professor of Gynecologic Oncology at MD Anderson Cancer Center in Houston, told the Texas Tribune the state ignored an opportunity that Australia seized. “[Australia] embraced the vaccine at that time, and our fear kind of began around then,” Ramondetta said. “Really, vaccination in general has just gone down the tube since then.”

CDC Study Pushes HPV Vaccination Recommendations in US

Texas is not the only state failing to capitalize on the HPV vaccine’s cancer-curing promise. The CDC recently stated in a news release announcing a recent study that 92% of cancers caused by HPV could be eliminated if HPV vaccine recommendations were followed. CDC published the study in its Morbidity and Mortality Weekly Report.

HPV is a common virus that is linked to not only cervical cancer but also cancers of the penis, head, and neck, as well as conditions like genital warts. Though the CDC recommends children get the two-dose vaccine at ages 11-12, the study findings indicate that only 51% of teens ages 11 to 17 have received the recommended doses of HPV vaccine, a 2% increase from 2017 to 2018.

“A future without HPV cancers is within reach, but urgent action is needed to improve vaccine coverage rates,” Brett Giroir, MD, Assistant Secretary for Health, US Department of Health and Human Services (HHS), stated in the CDC news release. “Increasing HPV vaccination overage to 80% has been and will continue to be a priority initiative for HHS, and we will continue to work with our governmental and private sector partners to make this a reality.”

Can Australia Eliminate Cervical Cancer?

University of Queensland Professor Ian Frazer, MD, who co-authored the Lancet Public Health study, believes Australia is on the verge not only of eliminating cervical cancer, but also eradicating the HPV virus itself.

“Because this human papillomavirus only infects humans, and the vaccine program prevents the spread of the virus, eventually we’ll get rid of it, like we did with smallpox,” Frazer told The Age.

“It’s not going to happen in my lifetime,” he added. “But it could happen in the lifetime of my kids if they go about it the right way.”

If Australia’s combination of high HPV vaccination rates and new HPV screening program succeeds in effectively eliminating cervical cancer, clinical laboratories in this country should expect stepped-up efforts to increase HPV vaccination rates in the United States. A renewed focus on reducing—and ultimately eliminating—cervical cancer, could lead to fewer or less-frequently performed Pap tests as part of cervical cancer screening protocols.

—Andrea Downing Peck

Related Information:

The Projected Timeframe Until Cervical Cancer Elimination in Australia: A Modelling Study

Years after Texas Backed Off HPV Vaccine Mandate, Cervical Cancer Rate Soars

Cervical Cancer Set to Be Eliminated from Australia in Global First

An Estimated 92% of Cancers Caused by HPV Could be Prevented by Vaccine

Morbidity and Mortality Weekly Report

Did The Joint Commission Omit Misdiagnosis from Its Lists of Top 10 Sentinel Events for 2018 and 2019?

Though data on delays in treatment due to misdiagnosis have been collected by TJC since 2015, misdiagnosis is not listed among the reported top 10 sentinel events

Accurate diagnosis could be the most critical aspect of all healthcare. Without accurate diagnoses, doctors may be delayed in starting treatment for their patients. In other cases, ordering inappropriate clinical laboratory tests might contribute to a misdiagnosis.

Healthcare experts know that misdiagnoses take place far too often. In fact, the Society to Improve Diagnosis in Medicine (SIDM) recently formed a coalition of more than 50 healthcare providers and patient advocacy organizations to end preventable medical diagnostic errors. (See Dark Daily, “Society to Improve Diagnosis in Medicine Forms Coalition to Address Preventable Diagnostic Errors; Proper Use of Clinical Laboratory Test Is One Goal,” September 13, 2019.)

SIDM’s analysis revealed that “one in three malpractice cases involving serious patient harm is due to misdiagnosis.” And that, “Cancer, vascular events, and infection account for three-fourths of high-harm, diagnosis-related claims.” 

Therefore, it seems odd that misdiagnosis would not be front and center on the latest list of Sentinel Events from The Joint Commission (TJC), the non-profit organization that accredits more than 21,000 healthcare organizations on behalf of the federal Centers for Medicare and Medicaid Services (CMS). Was it omitted? Perhaps not.

What Is a Sentinel Event?

The Joint Commission adopted its formal Sentinel Event Policy in 1996 as a way to help healthcare organizations improve safety and mitigate future patient risk. TJC defines a sentinel event as a “patient safety event that reaches a patient and results in any of the following:

  • “death,
  • “permanent harm,
  • “severe temporary harm, and
  • “intervention required to sustain life.” 

TJC determines healthcare events to be “sentinel” when they “signal the need for immediate investigation and response.”

Misdiagnosis leading to preventable medical errors would seem to be a sentinel event, but it is missing from TJC’s list for the past two years. It’s not, however, missing from an earlier TJC list of preventable diagnostic errors.

Delay in Treatment Due to Misdiagnosis

A 2015 TJC advisory report on safety and quality issues in healthcare, titled “Preventing Delays in Treatment,” lists misdiagnosis among several reported events that led to delays in diagnosis that then led to patient harm or death.

In that report, TJC defines “delay in diagnosis” as “a non-optimal interval of time between onset of symptoms, identification, and initiation of treatment. A delayed diagnosis occurs when the correct diagnosis is delayed due to failure in or untimely ordering of tests (e.g., [clinical laboratory] work, colonoscopies, or breast imaging studies). Whether due to delay in diagnosis, misunderstanding of the disease, misdiagnosis, or failure to treat, delay in treatment can reduce the number of treatment options a patient can pursue.”

So, misdiagnosis was, at that time, an event the TJC collected data on and included in its advisor statements. But since then, it has been omitted from the list. What changed?

Recent Sentinel Events

Turns out, nothing really. Though misdiagnosis is not listed on TJC’s lists for 2018 and 2019, it is part of a more comprehensive list published by TJC in February titled, “Most Commonly Reviewed Sentinel Event Types.” That report offers more details on the listed sentinel events, and also includes a section drawn from TJC’s 2015 report on delays in treatment, which covers results due to misdiagnosis.

In March, TJC released its top-10 list of most frequently reported sentinel events reported in 2018. They include:

  • Falls
  • Unintended retention of a foreign body
  • Wrong-site surgery
  • Unassigned
  • Unanticipated events such as asphyxiation, burns, choking, drowning or being found unresponsive
  • Suicide
  • Delay in treatment
  • Product or device event
  • Criminal event
  • Medication error

Then, in August, TJC release a new report based on the 436 reports of sentinel events TJC received in the first six months of 2019. They include:

  • Anesthesia-related events
  • Care management events
  • Criminal events
  • Environmental events
  • Product or device events
  • Protection events
  • Suicide—emergency department
  • Suicide—inpatient
  • Suicide—offsite within 72 hours (these are defined in the Sentinel Event Policy)
  • Surgical or invasive procedure events

Following the release of its March sentinel events list, TJC noted that the components were typical when compared to previous years. 

“The trend for the most frequently reported sentinel events remains generally unchanged,” stated Gerard Castro, PhD, MPH (above), Project Director, Patient Safety Initiatives at The Joint Commission, in a PSQH analysis of the Joint Commission’s 2018 list of sentinel events. “Organizations should continue their work toward minimizing risks associated with these types of events, but also strengthen systems and processes that keep patients safe, such as reporting and learning from close calls, teamwork, and improving safety culture.” (Photo copyright: The Joint Commission.)

TJC’s website notes, however, that “fewer than 2% of all sentinel events are reported to The Joint Commission. Of these, 58.4% (8,714 of 14,925 events) have been self-reported since 2005. Therefore, these data are not an epidemiologic data set, and no conclusions should be drawn about the actual relative frequency of events or trends in events over time.”

Might that be because the healthcare organizations in the US accredited by the Joint Commission are “encouraged” to report sentinel events and not “required” to do so? This also allows accredited healthcare organizations to pick and choose which events to report to TJC.

If there is one easy conclusion to draw from all the information presented above, it is that the true rate of misdiagnoses—as well as other types of sentinel events—remains unknown. But what is equally true is that, step by step, the adoption and use of electronic health systems (EHRs), along with other digital tracking modalities, will make it easier for providers and healthcare policymakers to more accurately identify and classify instances of misdiagnoses.

When that happens and better data on misdiagnoses is available, it will be possible for medical laboratory professionals to use the methods of Lean and quality management to collaborate with physicians and other providers. The first step will be to identify the sources of misdiagnoses. The second step will be to use these quality improvement techniques to support providers in ways that allow them to reduce or eliminate the causes of diagnostic errors and misdiagnoses.

—JP Schlingman

Related Information:

Sentinel Event Statistics Released for 2018

Sentinel Events (SE)

Most Commonly Reviewed Sentinel Event Types

Preventing Delays in Treatment

Sentinel Event Statistics Released for First 6 months of 2019 with New Suicide Categories

TJC Releases Compliance and Sentinel Event Stats for First Half of 2018

Lab Quality Confab and Process Improvement meeting

;