Clinical laboratory scientists and microbiologists could play a role in helping doctors explain to patients the potential dangers of do-it-yourself medical treatments
Be careful what you wish for when you perform do-it-yourself (DIY) medical treatments. That’s the lesson learned by a woman who was seeking relief for irritable bowel syndrome (IBS). When college student Daniell Koepke did her own fecal transplant using poop from her brother and her boyfriend as donors her IBS symptoms improved, but she began to experience medical conditions that afflicted both fecal donors.
“It’s possible that the bacteria in the stool can influence inflammation in the recipient’s body, by affecting their metabolism and activating their immune response,” microbial ecologist Jack Gilbert, PhD, Professor and Associate Vice Chancellor at University of California San Diego (UC San Diego) told Business Insider. “This would cause shifts in their hormonal activity, which could promote the bacteria that can cause acne on the skin. We nearly all have this bacterium on skin, but it is often dormant,” he added.
A Fecal Microbiota Transplant (FMT) is a procedure where stool from a healthy donor is transplanted into the microbiome of a patient plagued by a certain medical condition.
Our guts are home to trillions of microorganisms (aka, microbes), known as the gut microbiota, that serve many important functions in the body. The microbiome is a delicate ecosystem which can be pushed out of balance when advantageous microbes are outnumbered by unfavorable ones. An FMT is an uncomplicated and powerful method of repopulating the microbiome with beneficial microbes.
“With fecal microbiome transplants there is really compelling evidence, but the science is still developing. We’re still working on if it actually has benefits for wider populations and if the benefit is long-lasting,” said Gilbert in a Netflix documentary titled, “Hack Your Health: The Secrets of Your Gut.”
“The microbial community inside our gut can have surprising influences on different parts of our body,” microbial ecologist Jack Gilbert, PhD (above), of the Gilbert Lab at University of California San Diego told Business Insider. “Stools are screened before clinical FMTs, and anything that could cause major problems, such as certain pathogens, would be detected. When you do this at home, you don’t get that kind of screening.” Doctors and clinical laboratories screening patients for IBS understand the dangers of DIY medical treatments. (Photo copyright: University of California San Diego.)
Changing Poop Donors
When Koepke began experiencing symptoms of IBS including indigestion, stabbing pains from trapped gas and severe constipation, she initially turned to physicians for help.
In the Netflix documentary, Koepke stated that she was being prescribed antibiotics “like candy.” Over the course of five years, she completed six rounds of antibiotics per year, but to no avail.
She also changed her diet, removing foods that were making her symptoms worse. This caused her to lose weight and she eventually reached a point where she could only eat 10 to 15 foods.
“It’s really hard for me to remember what it was like to eat food before it became associated with anxiety and pain and discomfort,” she said.
In an attempt to relieve her IBS symptoms, Koepke made her own homemade fecal transplant pills using donated stool from her brother. After taking them her IBS symptoms subsided and she slowly gained weight. But she developed hormonal acne just like her brother.
Koepke then changed donors, using her boyfriend’s poop to make new fecal transplant pills. After she took the new pills, her acne dissipated but she developed depression, just like her boyfriend.
“Over time, I realized my depression was worse than it’s ever been in my life,” Koepke stated in the documentary.
She believes the microbes that were contributing to her boyfriend’s depression were also transplanted into her via the fecal transplant pills. When she reverted to using her brother’s poop, her depression abated within a week.
Gilbert told Business Insider his research illustrates that people who suffer from depression are lacking certain bacteria in their gut microbiome.
“She may have had the ‘anti-depressant’ bacteria in her gut, but when she swapped her microbiome with his, her anti-depressant bacteria got wiped out,” he said.
FDA Approves FMT Therapy for Certain Conditions
Typically, the fecal material for an FMT procedure performed by a doctor comes from fecal donors who have been rigorously screened for infections and diseases. The donations are mixed with a sterile saline solution and filtered which produces a liquid solution. That solution is then administered to a recipient or frozen for later use.
On November 30, 2022, the US Food and Drug Administration (FDA) approved the first FMT therapy, called Rebyota, for the prevention of Clostridioides difficile (C. diff.) in adults whose symptoms do not respond to antibiotic therapies. Rebyota is a single-dose treatment that is administered rectally into the gut microbiome at a doctor’s office.
Then, in April of 2023, the FDA approved the use of a medicine called Vowst, which is the first oral FMT approved by the FDA.
According to the Cleveland Clinic, scientists are exploring the possibility that fecal transplants may be used as a possible treatment for many health conditions, including:
Doctors and clinical laboratories know that do-it-yourself medicine is typically not a good idea for obvious reasons. Patients seldom appreciate all the implications of the symptoms of an illness, nor do they fully understand the potentially dangerous consequences of self-treatment. Scientists are still researching the benefits of fecal microbiota transplants and hope to discover more uses for this treatment.
Though only in the pilot study phase, results correlate with earlier studies where both dogs and humans were able to “smell” specific diseases in people
Man’s best friend has risked life and limb to save humans for centuries. Now, researchers in Germany have discovered that pooches may be useful in the fight against COVID-19 as well, along with the added benefit that such testing would be non-invasive. In fact, some people believe disease-sniffing dogs may give clinical laboratory testing a run for its money.
Further, even if this approach were not warranted as a clinical diagnostic procedure, trained dogs could be deployed at airports, train stations, sporting events, concerts, and other public places to identify individuals who may be positive for SARS-CoV-2, the coronavirus that causes the COVID-19 illness. Such an approach would make it feasible to “screen” large numbers of people as they are on the move. Those individuals could then undergo a more precise medical laboratory test as confirmation of infections.
After only one week of training, the dogs were able to accurately detect the presence of the infection 94% of the time.
According to a live interview, which featured Holger Volk, PhD, Department Chair and Clinical Director of the Small Animal Clinic at the University of Veterinary Medicine Hannover and Maren von Köckritz-Blickwede, PhD, Professor of Biochemistry of Infections and Head of Scientific Administration and Biosafety at the Research Center for Emerging Infections and Zoonoses at TiHo, “The samples were automatically distributed at random and neither the dog handlers involved nor the researchers on site knew which samples were positive and which were used for control purposes. The dogs were able to distinguish between samples from infected (positive) and non-infected (negative) individuals with an average sensitivity of 83% and a specificity of 96%. Sensitivity refers to the detection of positive samples. The specificity designates the detection of negative control samples.
In their published study, the authors wrote, “Within randomized and automated 1,012 sample presentations, dogs achieved an overall average detection rate of 94% with 157 correct indications of positive, 792 correct rejections of negative, 33 false positive and 30 false negative indications.” They concluded, “These preliminary findings indicate that trained detection dogs can identify respiratory secretion samples from hospitalized and clinically diseased SARS-CoV-2 infected individuals by discriminating between samples from SARS-CoV-2 infected patients and negative controls. This data may form the basis for the reliable screening method of SARS-CoV-2 infected people.”
In the live interview, Dr. Köckritz-Blickwede said, “We think that this works because the metabolic processes in the body of a diseased patient are completely changed,” adding, “We think that the dogs are able to detect a specific smell of the metabolic changes that occur in those patients.”
“People have not really realized the potential the dog could have to detect disease from lung-diseased patients,” said Holger Volk, PhD (above with his dog Jo), Department Chair and Clinical Director of the Small Animal Clinic at the University of Veterinary Medicine Hannover and one of the authors of the paper, in a live interview. (Photo copyright: University of Veterinary Medicine Hannover.)
Using Dogs as Part of Clinical Laboratory Testing
The American Kennel Club (AKC) estimates that a dog’s sense of smell is 10,000 to 100,000 times greater than that of humans. This gives dog’s the ability to detect diseases in early stages of development.
“The next steps will be that we try to differentiate between sputum samples from COVID patients versus other diseases, like, for example from influenza patients,” said Köckritz-Blickwede. “That will be quite important to be able to differentiate that in the future.”
“This method could be employed in public areas such as airports, sport events, borders or other mass gatherings as an addition to laboratory testing, helping to prevent further spreading of the virus or outbreaks,” the live interview description states.
During a pandemic, employers might be able to use dogs to screen employees as they arrive for work. Dogs also could be used as an alternative or in addition to clinical laboratory testing to help prevent the spread of COVID-19. But more work must be done.
“What has to be crystal clear is that this is just a pilot study,” said Volk. “So, there is a lot of potential to take this further to really make it possible to use these dogs in the field.”
An article on the VCA Hospitals website, titled, “How Dogs Use Smell to Perceive the World,” states that dogs devote much of their brain power to the interpretation of smells and they have more than 100 million sensory receptor sites located in their nasal cavity.
By contrast, humans have only six million sensory receptor sites in their nasal cavity. The area of a dog’s brain that is dedicated to the analysis of odors is about 40 times larger than the comparable part of a human brain and dogs are capable of detecting odors thousands of times better than humans.
The article also further explains how dog’s olfactory glands are very unique when compared to other animals and humans. “Unlike humans, dogs have an additional olfactory tool that increases their ability to smell. Jacobson’s organ is a special part of the dog’s olfactory apparatus located inside the nasal cavity and opening into the roof of the mouth behind the upper incisors. This amazing organ serves as a secondary olfactory system designed specifically for chemical communication.
“The nerves from Jacobsen’s organ lead directly to the brain and are different from the other nerves in the nose in that they do not respond to ordinary smells. In fact, these nerve cells respond to a range of substances that often have no odor at all. In other words, they work to detect “undetectable” odors.”
VCA Hospitals is a chain of veterinary hospitals with more than 1,000 facilities located in 46 states and five Canadian provinces.
Could dogs help prevent hospital-acquired infections? It is an interesting question, and one that has been asked before. In “C. diff-sniffing Beagle Dog Could Lead to Better Infection Control Outcomes in Hospitals and Nursing Homes,” January 2013, Dark Daily reported on a beagle named Cliff (above), which could sniff out Clostridium difficile (C. diff), a potentially deadly bacteria. In a study conducted by researchers at Vrije University Medical Center (VUMC) in Amsterdam, Cliff detected C. diff in both stool samples and the air surrounding infected patients in hospitals. In one test, Cliff correctly identified 50 out of 50 stool samples that were C. diff positive. He correctly identified 47 of 50 negative samples. That’s a sensitivity rate of 100% and a specificity rate of 94%. (Photo copyright: ABC News.)
Dogs are amazing, that’s for sure. But for canines to become widely used to detect infections there would have to be a way to validate each dog’s ability to detect diseases, so that the diagnostics would be consistent across all the dogs being used.
So, while there appears to be potential for utilizing a dog’s uncanny sense of smell to detect disease—including COVID-19—more research is needed before development of clinical testing can take place. And, perhaps, a set of canine billing codes.
How medical laboratories can show value through process improvement methods and analytics will be among many key topics presented at the upcoming Lab Quality Confab conference
Quality management is the clinical laboratory’s best strategy for surviving and thriving in this era of shrinking lab budgets, PAMA price cuts, and value-based payment. In fact, the actions laboratories take in the next few months will set the course for their path to clinical success and financial sustainability in 2020 and beyond.
But how do medical laboratory managers and pathologists address these challenges while demonstrating their lab’s value? One way is through process improvement methods and another is through the use of analytics.
Clinical pathologists, hospital lab leaders, and independent lab executives have told Dark Daily that the trends demanding their focus include:
Ensuring needed resources and appropriate tests,
while the lab is scrutinized by insurance companies and internally by hospital
administration;
“Our impact on patient care, in many cases, is very
indirect. So, it is difficult to point to outcomes that occur. We know things
we do matter and change patient care, but objectively showing that is a real
struggle. And we are being asked to do more than we ever had before, and those
are the two big things that keep me up at night these days,” he added.
This is where process improvement methods and analytics are
helping clinical laboratories understand critical issues and find opportunities
for positive change.
“You need to have a strategy that you can adapt to a changing landscape in healthcare. You have to use analytics to guide your progress and measure your success,” Patricia Nortmann, System Director of Laboratory Services at St. Elizabeth Healthcare, Erlanger, Ky., told Dark Daily.
Clinical Laboratories Can Collaborate Instead of Compete
Prior to a joint venture with TriHealth in Cincinnati, St. Elizabeth lab leaders used data to inform their decision-making. Over about 12 years preceding the consolidation of labs they:
Implemented front-end automation outside the core area and in the microbiology lab.
“We are now considered a regional reference lab in the state
of Kentucky for two healthcare organizations—St. Elizabeth and TriHealth,”
Nortmann said.
Thanks to these changes, the lab more than doubled its
workload, growing from 2.1 million to 4.3 million outreach tests in the core
laboratory, she added.
Christopher Doern, PhD (left), Director of Microbiology and Associate Professor of Pathology at Virginia Commonwealth University Health System; Patricia Nortmann (center), System Director of Laboratory Services at St. Elizabeth Healthcare; and Joseph Cugini (right), Manager Client Solutions at Health Network Laboratories, will present practical solutions and case studies in quality improvement and analytics for clinical laboratory professionals at the 13th Annual Lab Quality Confab, October 15-16, 2019, at the Hyatt Regency in Atlanta, Ga. (Photo copyright: The Dark Report.)
Using Analytics to Test the Tests
Clinical laboratories also are using analytics and information technology (IT) to improve test utilization.
At VCH Health, Doern said an analytics solution interfaces
with their LIS, providing insights into test orders and informing decisions
about workflow. “I use this analytics system in different ways to answer
different questions, such as:
How are clinicians using our tests?
When do things come to the lab?
When should we be working on them?
“This is important for microbiology, which is a very delayed
discipline because of the incubation and growth required for the tests we do,”
he said.
Using analytics, the lab solved an issue with Clostridium
difficile (C diff) testing turnaround-time (TAT) after associating it with
specimen transportation.
Inappropriate or duplicate testing also
can be revealed through analytics. A physician may reconsider a test after discovering
another doctor recently ordered the same test. And the technology can guide
doctors in choosing tests in areas where the related diseases are obscure, such
as serology.
Avoiding Duplicate Records While
Improving Payment
Another example of process
improvement is Health Network Laboratories (HNL) in Allentown, Pa. A team there established an enterprise master patient index (EMPI) and implemented digital tools to find and eliminate
duplicate patient information and improve lab financial indicators.
“The system uses trusted sources of data to make sure data is clean and the lab has what it needs to send out a proper bill. That is necessary on the reimbursement side—from private insurance companies especially—to prevent denials,” Joseph Cugini, HNL’s Manager Client Solutions, told Dark Daily.
HNL reduced duplicate records in its database from 23% to
under one percent. “When you are talking about several million records, that is
quite a significant improvement,” he said.
Processes have improved not only on the billing side, but in
HNL’s patient service centers as well, he added. Staff there easily find
patients’ electronic test orders, and the flow of consumers through their
visits is enhanced.
Learn More at Lab Quality Confab Conference
Cugini, Doern, and Nortmann will speak on these topics and more during the 13th Annual Lab Quality Confab (LQC), October 15-16, 2019, at the Hyatt Regency in Atlanta, Ga. They will offer insights, practical knowledge, and case studies involving Lean, Six Sigma, and other process improvement methods during this important 2-day conference, a Dark Dailynews release notes.
Register for LQC, which is produced by Dark Daily’s sister publication The Dark Report, online at https://www.labqualityconfab.com/register, or by calling 512-264-7103.
Is gut microbiota the fabled fountain of youth? Researchers at Valenzano Research Lab in Germany found it works for killifish. Could it work for other vertebrates as well?
Research into the microbiomes of humans and other animals is uncovering tantalizing insights as to how different microbes can be beneficial or destructive to the host. It is reasonable to expect ongoing research will eventually give microbiologists and clinical laboratories useful new medical laboratory tests that assess an individual’s microbiome for diagnostic and therapeutic purposes.
Human microbiota (AKA, microbiome) have been identified as having a key role in several different health conditions. In previous ebriefings, Dark Daily reported on several breakthroughs involving the microbiome that bring the promise of precision medicine ever closer. Research and clinical studies are contributing to more accurate diagnoses, identification of best drugs for specific patients, and, enhanced information for physician decision-making, to name just a few benefits.
Valenzano Lab published its study online in August. The team of scientists and researchers led by Dario Valenzano, PhD, focused on the longevity of the turquoise killifish (Nothobranchius furzeri), a tiny fish native to the African countries of Mozambique and Zimbabwe. They found that when older killifish ate the fecal matter of younger killifish they lived longer. The fecal matter carried the microbiota to the older fish and extended their lifespans.
Moving Microbiome from One Gut to Another
To perform the research, Valenzano and his team first treated killifish that were nine and a half weeks old (considered middle-aged) with antibiotics to cleanse their gut flora. The fish were then placed in a sterile aquarium containing the gut contents of young adult killifish that were just six weeks old. Although killifish won’t typically eat feces, they would nip at the gut contents in the water and swallow some of the microbes from the younger fish in the process. The researchers discovered that the transplanted microbes were able to successfully colonize the stomachs of the older fish.
Dario Valenzano, PhD (above), gazes at an older Killifish, the subject in his research into increased aging at the Valenzano Research Lab in Cologne, Germany. Studies of the microbiomes of different species is expected to eventually give microbiologists new and useful clinical laboratory tests. (Photo copyright: Max Planck Institute for Biology of Aging.)
When the middle-aged killifish reached the age of 16 weeks—considered elderly—their gut microbiomes were still similar to that of a six-week-old fish. The process had a noticeable effect on the lifespan of the killifish that received the microbiome transplants from the young fish. They lived 41% longer than killifish that received microbes from middle-aged fish and their longevity increased by 37% over fish that were not exposed to any treatment at all. In addition, at 16 weeks, the killifish who had received the transplants were much more active than fish of the same age who had not received the transplants.
“These results suggest that controlling the composition of the gut microbes can improve health and increase life span,” the study paper noted. “The model system used in this study could provide new ways to manipulate the gut microbial community and gain key insights into how the gut microbes affect aging. Manipulating gut microbes to resemble a community found in young individuals could be a strategy to delay the onset of age-related diseases.”
Transferring Fecal Microbiota to Save/Extend Human Lives
Previous research has indicated there may be a connection between microbiomes and aging in some animals, and that the diversity of gut microbes decreases with age. This study proved that this same pattern is true in turquoise killifish.
However, Valenzano does not know how the microbes are affecting the lifespans of the older killifish. “It is possible that an aging immune system is less effective at protecting the micro-organisms in the intestines, with the result that there is a higher prevalence of pathogens in older guts. The gut microbiota in a young organism could help to counter this and therefore support the immune system and prevent inflammation. This could lead to longer life expectancy and better health,” he stated in a press release.
“You can really tell whether a fish is young or old based on its gut microbiota,” Valenzano told Nature. He noted, however, that it is too early to determine if fecal transplants can be used in humans to extend life. “I wouldn’t go that far. This is really early evidence that this has a potential positive effect.”
There is, however, a similar procedure used in humans called Fecal Microbiota Transplant or FMT that has demonstrated promising results in treating certain illnesses.
In a fecal transplant, fecal matter is collected from an approved donor, treated, and placed in a patient during a colonoscopy, endoscopy, sigmoidoscopy, or enema. The purpose of the transplant is to replace good bacteria in a colon that has undergone an event that caused the colon to be inundated with bad bacteria, such as Clostridium difficile, resulting in C. diff. infection, a life-threatening illness that, according to the Centers for Disease Control and Prevention (CDC), kills tens of thousands of people each year.
“The challenge with all of these experiments is going to be to dissect the mechanism. I expect it will be very complex,” stated Heinrich Jasper, PhD, in the Nature article. Jasper is a professor at the Buck Institute for Research on Aging in Novato, California. His lab is working on similar research with microbiome transplants in fruit flies. He predicts this type of longevity research will be performed on other animals in the future.
Valenzano’s and Jasper’s research may eventually create new diagnostic tools for microbiologists to assess the microbiome of individual patients. This technology may also enable microbiologists to advise pathologists and clinical laboratories regarding what specific microbes may be harmful and what microbes may be therapeutically beneficial to patients.
Clinical laboratory professionals and pathologists are part of multi-disciplinary efforts to curb healthcare-associated infections
One interesting fact about a national list of hospitals that rank highest in infection prevention is that they are mostly smaller and non-teaching hospitals. This was one finding from a recent survey conducted by Consumer Reports.