Research could lead to new biomarkers for clinical laboratory tests that spot disease early in patients
As we have covered in previous Dark Daily ebriefs, there are ongoing efforts to develop diagnostic assays that use human breath as the specimen. One early example was the breath specimen for Helicobacter pylori (H. pylori) testing—the bacteria that causes peptic ulcers—in the 1990s. Thus, a new sensor developed by scientists at Zhejiang University in China that can detect the presence of lung cancer in human breath will be of interest to medical laboratory scientists and clinical laboratories working on such testing.
In a proof-of-concept study, the Zhejiang University researchers “developed ultrasensitive nanoscale sensors that in small-scale tests distinguished a key change in the chemistry of the breath of people with lung cancer,” according to an American Chemical Society (ACS) news release.
The new research exemplifies how instruments are becoming increasingly sensitive to detection of smaller specimen quantities, making it possible to even use exhaled breath to diagnose lung cancer, noted a review article published in Science Direct.
“This study presents a novel Pt@InNiOx [platinum (Pt), indium (In), nickel (Ni)] nanoflake isoprene sensor that achieves an exceptionally low limit of detection at two parts per billion (2ppb)—the lowest reported for isoprene sensor to date,” wrote study lead author, Pingwei Liu, PhD (above), distinguished research fellow, Zhejiang University, et al, in ACS Sensors. “Our work not only provides a breakthrough in low-cost, noninvasive cancer screening through breath analysis but also advances the rational design of cutting-edge gas sensing materials.” Clinical laboratories working with breath sample biomarkers will be intrigued by this new advancement in the technology. (Photo copyright: Zhejiang University.)
Finding the Breakthrough Sensor
The Zhejiang University researchers were motivated by the potential for rapid gas sensing in diagnostics. Many gases, including carbon dioxide, are exhaled. But one particular gas, isoprene, they found “can indicate the presence of lung cancer,” the news release states.
However, while breath is readily available, it is not easy to isolate breath biomarkers. That is because a detector needs to “differentiate between volatile chemicals, withstand the natural humidity of exhaled breath, and detect tiny quantities of specific chemicals,” New Atlas explained.
To detect small specimen quantities of isoprene, a highly sensitive sensor needed to be developed—one that would be a step up from standard indium oxide-based breath sensors.
The scientists experimented with a series of indium (III) oxide (In203)-based nanoflake sensors until they found the sensor that performed consistently in nine experiments. They called it Pt@InNiOx for the platinum (Pt), indium (In), and nickel (Ni) it contained.
According to the news release, the Pt@InNiOx sensor:
Had “sensitivity that far surpassed earlier sensors” as evidenced by detection of isoprene as low as 2ppb.
Emphasized isoprene attraction over other volatile compounds in breath.
Has advanced sensitivity due to “Pt nanoclusters uniformly anchored on the nanoflakes” activating the isoprene sensing.
Gadget Review described the innovation as a “significant advance in diagnostic capability” that uses nanoscale technology along with “indium oxide nanoflakes with platinum-based nanoclusters.”
Developing the Lung Cancer Diagnostic Device
The scientists put their Pt@InNiOx nanoflakes into a portable sensing device for breath analysis. They then inserted breath samples from 13 people including five who had lung cancer. They found that:
In samples from people with cancer, the device enabled detection of isoprene levels lower than 40 ppb.
In samples from cancer-free participants, the device found isoprene levels more than 60 ppb.
“We integrate these ultrasensitive Pt@InNiOx nanoflakes into a miniaturized portable electronic device that successfully distinguishes lung cancer patients with expiratory isoprene below 40ppb, from the healthy population with isoprene above 60 ppb, enabling an accurate diagnosis in clinics,” wrote study lead author, Pingwei Liu, PhD, distinguished research fellow, Zhejiang University, et al, in ACS Sensors.
“As the isoprene hits the nanoflakes, electron release is sparked in a way that can be measured,” MSN Health reported, adding that the nanoflakes were also able to find isoprene in other chemicals and operate even in humid conditions.
Breath as Lab Test Biomarker for Cancer
In the United States, more people die from lung cancer than any other form of cancer, according to US Centers for Disease Control and Prevention statistics. The CDC data show there were 209,500 new lung and bronchus cancer cases in 2022, the most recent year for available data.
The Zhejiang University scientists reportedly plan to continue their research on the sensing materials and link between isoprene and lung cancer.
Studies continue to show many components in human breath can be used as clinical laboratory test biomarkers. Assays that use the breath as specimen may one day play an important role in early diagnosis of lung cancer and other diseases.
Clinical laboratories and point-of-care settings may have a new diagnostic test if this novel handheld device and related technology is validated by clinical trials
Efforts to develop breath analyzers that accurately identify viral infections, such as SARS-CoV-2 and Influenza, have been ongoing for years. The latest example is ViraWarn from Opteev Technologies in Baltimore, Maryland, and its success could lead to more follow-up PCR tests performed at clinical laboratories.
“Breath is one of the most appealing non-invasive sample types for diagnosis of infectious and non-infectious disease,” said Opteev in its FDA Pre-EUA application. “Exhaled breath is very easy to provide and is less prone to user errors. Breath contains a number of biomarkers associated with different ailments that include volatile organic compounds (VOCs), viruses, bacteria, antigens, and nucleic acid.”
Further clinical trials and the FDA Pre-EUA are needed before ViraWarn can be made available to consumers. In the meantime, Opteev announced that the CES (Consumer Electronic Show) had named ViraWarn as a 2023 Innovation Award Honoree in the digital health category.
“ViraWarn is designed to allow users an ultra-fast and convenient way to know if they are spreading a dangerous respiratory virus. With a continued increase in COVID-19 and a new surge in RSV and influenza cases, we’re eager to bring ViraWarn to market so consumers can easily blow into a personal device and find out if they are positive or negative,” said Conrad Bessemer (above), Opteev President and Co-Founder, in a news release.
Opteev is a subsidiary of Novatec, a supplier of machinery and sensor technology, and a sister company to Prophecy Sensorlytics, a wearable sensors company.
The ViraWarn breath analyzer uses a silk-based sensor that “traces the electric discharge of respiratory viruses coupled with an artificial intelligence (AI) processor to filter out any potential inaccuracies,” according to the news release.
Here is how the breath analyzer (mouthpiece, attached biosensor chamber, and attached printed circuit board chamber) is deployed by a user, according to the Opteev website:
The user turns on the device and an LED light indicates readiness.
The user blows twice into the mouthpiece.
A carbon filter stops bacteria and VOCs and allows virus particles to pass through.
As “charge carriers,” virus particles have a “cumulative charge.”
Electrical data are forwarded to the AI processor.
The AI processer delivers a result.
Within 60 seconds, a red signal indicates a positive presence of a virus and a green signal indicates negative one.
“The interaction of the virus with a specially designed liquid semiconductive medium, or a solid polymer semiconductor, generates changes in the conductivity of the electrical biosensor, which can then be picked up by electrodes. Such electrical data can be analyzed using algorithms and make a positive or negative call,” explains an Opteev white paper on the viral screening process.
While the ViraWarn breath analyzer can identify the presence of a virus, it cannot distinguish between specific viruses, the company noted. Therefore, a clinical laboratory PCR test is needed to confirm results.
Other Breath Tests
Opteev is not the only company developing diagnostic tests using breath samples.
For clinical laboratory managers and pathologists, Opteev’s ViraWarn is notable in breath diagnostics development because it is a personal hand-held tool. It empowers people to do self-tests and other disease screenings, all of which would need to be confirmed with medical laboratory testing in the case of positive results.
Further, it is important to understand that consumers are the primary target for this novel diagnostic device. This is consistent with investor-funding companies wanting to develop testing solutions that can be used by consumers. At the same time, a device like ViraWarn could be used by clinical laboratories in their patient service centers to provide rapid test results.
It has been regularly demonstrated in recent decades that human breath contains elements that could be incorporated into clinical laboratory tests, so the decision to use this “breath biopsy” test in a therapeutic drug trial will be closely watched
When a major pharma company pays attention to a breath test, implications for clinical laboratories are often forthcoming. Such may be the case with GlaxoSmithKline (GSK). The global healthcare company has selected Owlstone Medical’s Breath Biopsy technology for use in its Phase II clinical trial of danirixin (DNX), a respiratory drug under development by GSK for treatment of chronic obstructive pulmonary disease (COPD), an Owlstone Medical news release announced.
Anatomic pathologists and medical laboratory leaders will be intrigued by GSK’s integration of breath-based specimens in a clinical trial of a respiratory drug. The partners in the trial aim to analyze breath samples to better understand the drug’s treatment effects and to discover personalized medicine (AKA, precision medicine) opportunities.
GSK (NYSE:GSK), headquartered in the UK but with a large presence in the US, researches and develops pharmaceutical medicines, vaccines, and other consumer health products.
Owlstone Medical, a diagnostic company, is developing a breathalyzer for disease and says it is on a mission to save 100,000 lives and $1.5 billion in healthcare costs. Dark Daily previously reported on Owlstone Medical’s Breath Biopsy platform. The Cambridge, England-based company has raised significant funding ($23.5 million) and already garnered credible cancer trial collaborators including the UK’s National Health Service (NHS).
Now, Owlstone Medical has brought its breath analysis technology to bear on chronic disease outside of cancer diagnostics development. A pharmaporum article called Owlstone’s Medical’s work with GSK an “additional boost of confidence” in the company’s technology, as well as a means for revenue.
Billy Boyle, co-founder and Chief Executive Officer, Owlstone Medical (above), shown with the company’s ReCIVA Breath Sampler device. This will be used by GSK in its Phase II respiratory disease clinical trial of danirixin to “capture VOC biomarkers in breath samples.” (Photo copyright: Business Weekly UK.)
GSK Studying Future Treatments for Respiratory Diseases
COPD affects about 700 million people worldwide, an increase of about 65% since 1990, GSK pointed out. In September 2017, GSK presented respiratory disease data and its pipeline medications at the European Respiratory Society in Milan, Italy. Included was information on danirixin (an oral CXCR2 antagonist), which is part of the company’s focus on COPD disease modification, according to a GSK news release.
“Each of our studies sets the bar for our future research and innovation,” noted Neil Barnes, MA Cantab, FRCP, FCCP(Hon), Vice President, Global Franchise Medical Head, GSK Respiratory, in the GSK press release.
Clinical Trial Aimed at Identifying the ‘Right’ Patients
With Owlstone Medical’s breathalyzer, GSK plans to explore how volatile organic compounds (VOCs) can help identify patients who will benefit most from the company’s medications, as well as evaluate Danirixin’s effects. A critical element of personalized medicine.
“It’s part of our efforts to identify the right patient for the right treatment,” said Ruth Tal-Singer, PhD, GSK’s Vice President of Medicine Development Leader and Senior Fellow, Respiratory Research and Development, in the Owlstone Medical news release.
VOCs in breath will be captured in a non-invasive way from patients who wear Owlstone Medical’s ReCIVA Breath Sampler, which, according to Owlstone Medical, has CE-mark clearance, a certification noting conformity with European health and safety standards. The VOCs breath samples will then be sent to Owlstone Medical’s lab for high-sensitivity analysis.
“Non-invasive Breath Biopsy can establish a role in precision medicine applications such as patient stratification and monitoring treatment response,” said Billy Boyle, Owlstone Medical’s co-Founder and Chief Executive Officer.
VOC Biomarkers in Respiratory Disease
VOC profiles can be characteristic of COPD as well as other respiratory diseases including asthma, tuberculosis, and cystic fibrosis, reported Science/Business.
According to Owlstone Medical’s Website, VOCs are gaseous molecules produced by the human body’s metabolism that are suitable for Breath Biopsy. Their research suggests that exhaled breath reflects molecular processes responsible for chronic inflammation. Thus, VOCs captured through Breath Biopsy offer insight into respiratory disease biomarkers.
Breath also includes VOCs that originate from circulation, which can provide information on a patient’s response to medications.
How the Breath Biopsy Platform Works
Owlstone Medical’s platform relies on its patented Field Asymmetric Ion Mobility Spectrometry (FAIMS) technology, which “has the ability to rapidly monitor a broad range of VOC biomarkers from breath, urine and other bodily fluids with high sensitivity and selectivity,” according to the company’s website. During the process:
Gases are exchanged between circulating blood and inhaled fresh air in the lungs;
VOC biomarkers pass from the circulation system into the lungs along with oxygen, carbon dioxide, and other gases;
Exhaled breath contains exiting biomarkers.
It takes about a minute for blood to flow around the body. So, a breath sample during that time makes possible collection and analysis of VOC biomarkers from any part of the body touched by the circulatory system.
The medical analysis is enabled by software in the Owlstone Medical lab, Boyle told the Cambridge Independent.
“There’s an analogy with blood prints—you get the blood and can look for different diseases, and we’ve developed core hardware and technology to analyze the breath sample,” he said.
Another Breath Sample Device
The ReCIVA Breath Sampler is not the only breathalyzer focused on multiple diseases. Dark Daily reported on research conducted by Technion, Israel’s Institute of Technology, into a breath analyzer that can detect up to 17 cancers, and inflammatory and neurological diseases.
But Owlstone Medical stands out due, in part, to its noteworthy partners: the UK’s National Health Service, as well as the:
And now the company can add collaboration with GSK to its progress. Though some question the reliability of breath tests as biomarkers in the areas of sensitivity and specificity required for cancer diagnosis, Owlstone Medical appears to have the wherewithal to handle those hurdles. It is a diagnostics company that many pathologists and medical laboratory professionals may find worth watching.