Pathologists and clinical laboratories will play a key role in collecting the data needed to create a person’s digital twin
Digital twins is a promising new technology that is making a big impact in healthcare. This development is significant because clinical laboratory test results will be among the most important sets of data to go into the creation of a patient’s “digital twin.”
A digital twin is defined by IBM as “a virtual representation of an object or system designed to reflect a physical object accurately. It spans the object’s lifecycle, is updated from real-time data, and uses simulation, machine learning, and reasoning to help make decisions.”
“We define a digital twin for healthcare as a virtual representation of a person which allows dynamic simulation of potential treatment strategy, monitoring and prediction of health trajectory, and early intervention and prevention, based on multi-scale modeling of multi-modal data such as clinical, genetic, molecular, environmental, and social factors, etc.,” wrote the authors of a review article published in NPJ Digital Medicine titled, “Digital Twins for Health: A Scoping Review.”
“The concept of digital twin for health (DT4H) holds great promise to revolutionize the entire healthcare system, including management and delivery, disease treatment and prevention, and health well-being maintenance, ultimately improving human life,” wrote study lead Eva Katsoulakis, MD (above), clinical informaticist and radiation oncologist at Tampa General Hospital in Florida, et al, in a review article she and her team published in NPJ Digital Medicine. Clinical laboratory test data will be a key element in the creation of a patient’s digital twin. (Photo copyright: Tampa General Hospital.)
Development of Digital Twins
Something akin to digital twins was first used in 1960 at NASA when replicas of spacecrafts currently on a mission in space were duplicated and studied on Earth. In 1991, Michael Grieves introduced the concept to manufacturing while at University of Michigan’s College of Engineering. The technology was later coined “digital twins” by John Vickers, a principal technologist in advanced manufacturing at NASA in 2010, IBM noted.
The increased use of digital twins in healthcare has brought some brilliant advancements. Examples, as reported by Computer Weekly, include:
Surgery and treatment: Boston Children’s Hospital uses digital twins to examine the complexities of heart procedures in reference to oxygen, blood flow, and valve pressure. Real-time analysis helps with surgeries and treatments, allowing clear visualization at all angles.
Metabolic analysis to tackle kidney failures: Digital twins are being used in Singapore to “Replicate metabolic fluxes to predict chronic kidney disease in type 2 diabetes mellitus.” Doctors there hope to curb the spike of chronic kidney disease found in type 2 diabetes mellitus. Their country has seen cases double in the last 40 years.
Bacterial predictions, E. coli: Bacteria behavior is being analyzed in computational simulations as part of a Simulating Microbial Systems (SMS) program. Run by the US Defense Advanced Research Projects Agency, the “SMS seeks interdisciplinary, comprehensive, and integrated workflows to generate unknown parameters from new data to inform computational models that can predict E. coli.”
Full body data: Precisely personalized care is the goal of European Virtual Human Twins Initiative, a project from the European Commission. The group creates digital twins and updates them with an individual’s personal conditions and health information that shifts as they age, keeping prevention as a focal point.
Respiratory viral pathogens: The complexities and variety of causes behind respiratory infections makes it an ideal area for digital twins. Its use in hospital ICUs can help doctors consider pneumonia treatment outlooks and develop plans for spread of infection.
Pharmaceuticals: Many pharma companies are opting to use digital twins since drug development is highly expensive and animal testing does not always provide clear data compared to human testing. Examples include Orion Pharma, which paired with AstraZeneca and Bayer to create digital twins that “capture genetic and molecular interactions that causally drive clinical and physiological outcomes.” Immunology company, Sanofi, also is using digital twins as “an essential first step to improve efficacy and safety.”
Future of Digital Twins in Healthcare
While digital twin development within healthcare is still in early stages, it promises to pioneer much change.
“When you have this model, you can personalize with certain features, certain anatomy, then you can try things. In heart surgery, you can’t try 20 different things, you only have one shot,” Ellen Kuhl PhD, professor of engineering and bioengineering at Stanford University, told Computer Weekly.
As technology advances and personalized healthcare continues to trend, it is likely digital twins will have a long-term place in medical practices. Astute clinical laboratory professionals will watch the expansion of this trend, since lab data will play such a key role in its development.
Speakers at this week’s Executive War College in San Antonio explained that the way records are collected and stored plays a large part in the long-term usefulness of clinical laboratory data
Data structure as a term may not flow off the lips of clinical laboratory and pathology laboratory managers, but it should be top-of-mind. Well-structured data improves reimbursements and, in aggregated form, can be an enticing avenue to partnerships with outside parties.
Data structure refers to the makeup of digital records—in other words, how data is collected, stored, and accessed. Structured information offers consistency and is easier to analyze and share.
“You have to make sense of all that messy data, and that’s a heavy lift,” she said. “Results are not standardized.”
Appeals Payments Increase with More Clinical Data
Data quality can improve claim reimbursement appeals, Goede noted. When a more complete clinical record is provided to payors, they are more likely to reimburse for services.
According to information Goede covered along with Julie Ramage, Director of Precision Medicine Quality Initiatives and Partnerships at biopharmaceutical company AstraZeneca, when appealing a denied claim for a colon cancer molecular test, for example, the average appeal payment was $318 without cross-specialist clinical records.
Meanwhile, payment for a similar claim appeal which included that added data jumped to $612!
This information is often available, but may not be structured in a way that makes it easy to share with a payer. “You really have to be thinking about what elements you need,” Goede said.
Market for Structured, Anonymized Lab Data
Clinical laboratories that want to provide or sell anonymized, aggregated data to outside parties—such as research firms or pharmaceutical companies—also need to pursue efficient data structure. The re-use of existing, high-quality lab data can create a new business revenue stream.
“But it has to be more than that vanilla, male/female, date-of-birth stuff,” Ramage noted.
For example, she said, genetic testing builds up data registries, and that’s what pharma is looking for to find patients early on.
“If you don’t have a way to structure your data, you’re not going to be able to play in the sandbox,” she added.
Co-presenters Julie Ramage (left), Director of Precision Medicine Quality Initiatives and Partnerships at AstraZeneca Pharmaceuticals, and Patricia Goede, PhD (right), Vice President of Clinical Informatics at XIFIN, Inc., answer attendee questions about data structure during their presentation at this week’s Executive War College Conference on Laboratory and Pathology Management in San Antonio. To register for EWC 2022 and receive a special early-bird rate, click here by November 6.
How Clinical Laboratories Can Improve Clinical Data Structure
Here are some tips for clinical laboratory executives to consider as they tackle data structure:
Standardize how to enter patient information and test results. A common problem with data input is that the same information is entered differently over time. For example, various patient records might refer to dates in different ways: November 1, 2021, can also be entered as 11/1/21, 11/1/2021, or 11-01-21. Structured data uses a single way to list dates in records. This lesson applies to all similar clinical data.
Use dropdown menu choices instead of free-typing, open fields. An online box to enter a test result can create a variety of entries that affect data structure. While not perfect, drop-down options create a consistent set of entries, Goede said.
Ask patient advocacy groups about common nomenclature. Clinical laboratory data should reflect how patients speak, Ramage said. For example, do patients refer to genomic and genetic testing as the same thing? Establishing more consistency improves data structure as records are updated.
Enlist your organization’s IT or research team for help. Tech workers and principal investigators can easily look at clinical laboratory data and tell what information is missing or inconsistent, said Cheryl Schleicher, Director of IT Strategy at Northwell Health Labs in Lake Success, NY. Schleicher attended this week’s Executive War College.
Look Further into Clinical Laboratory Data Structure
Data structure can help clinical laboratories and pathology laboratories grab more reimbursement dollars and potentially sell anonymized data to external partners.
It is an area many lab executives are not familiar with and need to investigate more, particularly following the accelerated move to digital lab services during the COVID-19 pandemic. Your organization’s IT department or Chief Information Officer can be a useful ally.
If you could not make it to this week’s Executive War College, then join us for our next Executive War College on April 27-28, 2022, in New Orleans. Click here to take advantage of special early-bird pricing for this critical event.
Some cancer researchers worry that these patients may not benefit from such clinical laboratory testing because effective therapeutic drugs don’t exist for their cancers
What can be more patient-centric than for a medical laboratory company to offer free genetic tests for cancer? That’s the strategy of a firm in Canada that is offering free cancer genomics testing to 1,500 cancer patients. However, some cancer researchers responded to this offer with skepticism.
In March, Contextual Genomics of Vancouver, British Columbia, began providing its cancer genomics test free to the first 1,500 patients whose oncologists submitted tumor samples. These specimens would be tested using the company’s Find It hotspot cancer panel.
“You could call it marketing, but it’s making this test available to people who haven’t had access to it before,” stated Chris Wagner, Contextual Genomics President and CEO, in a CBC News Canada interview.
Contextual Genomics says its Find It test focuses on “90 hotspots across 29 known cancer genes and analyzes seven exons of three genes,” with the specific genes and mutations selected because they are “actionable and can potentially direct patient treatment, indicate prognosis, and support diagnosis.” Oncologists that participate in this commercial pilot program will receive a comprehensive report that interprets the sequencing results. The report also identifies any approved drugs or clinical trials that target the patient’s gene mutations. (more…)
Clinical laboratories and pathology groups may benefit from the attractive economics of digital marketing
For more than two decades, pharmaceutical sales representatives have been ubiquitous in doctors’ offices. But in a surprise development, many of the nation’s largest pharma companies are dramatically downsizing their sales forces and opting to promote their products through digital media.
This is an important new trend which has consequences for those clinical laboratories and anatomic pathology groups which send their own medical laboratory sales reps into doctors’ offices. It is evidence that the economics of sending sales reps into offices to educate and persuade physicians to prescribe new drugs for patients may be less favorable when compared to the economics of reaching physicians via the growing number of new digital sales and marketing channels.
In a recent story published by The Wall Street Journal, it was noted that pharmaceutical companies, as they reduce the number of sales reps who make calls on office-based physicians, increasingly make greater use of digital sales and marketing programs that include the Internet, smart phones, tablet technology and even iTunes. (more…)