Innovative in-office test, when integrated with UTI microbiology testing performed by clinical laboratories, could contribute to better patient outcomes
Treatments for certain bacterial infections are becoming less effective due to antimicrobial resistance (AMR). Now, after a 10-year-long worldwide competition, the first multi-million euro prize for an accurate, rapid, and cost effective clinical laboratory test for diagnosing and treating urinary tract infections (UTIs) went to Sysmex Corporation’s subsidiary Astrego. This milestone event could benefit tens of millions of people who suffer from UTIs annually.
Astrego, of Uppsala, Sweden, won the €8 million (US$8.19 million) Longitude Prize on AMR for its PA-100 AST System. The new diagnostic technology will “transform treatment of urinary tract infections and brings the power of clinical laboratory testing into a doctor’s office,” according to a news release from Challenges Works, the United Kingdom-based organization that organized and awarded the prize.
The Astrego system is, according to Challenge Works’ website, a “game-changing solution” in “a novel point-of-care diagnostic test that rapidly and accurately identifies the presence of a bacterial infection and the right antibiotic to prescribe.”
“We launched the Longitude Prize on AMR (in 2014) to create the urgent ‘pull’ needed to get innovators working on one of the biggest life-and-death challenges facing humanity. Hundreds of teams [that] competed with multiple solutions [are] now close to market thanks to the prize,” said Tris Dyson, Managing Director, Challenge Works, in a news release.
The new diagnostic technology “could herald a ‘sea change’ in antibiotic use” according to the judges of the competition, The Guardian reported.
“The PA-100 AST System (above) creates a future where patients can quickly and accurately get a diagnosis and the correct treatment when they visit the doctor,” said Sherry Taylor, MD, UK National Health Service, Temple Fortune Medical Group, London, in the Challenge Works news release. “Accurate, rapid diagnosis of bacterial infections that help doctors and health workers to manage and target antibiotics, will slow the development and spread of antibiotic resistant infections, improve healthcare and save potentially millions of lives,” she added. In-office point-of-care systems like the PA-100 may reduce the number of doctor orders for UTI tests to clinical laboratories while contributing to better patient outcomes. (Photo copyright: Sysmex.)
How the Test Works
In the UK, people are treated for UTIs more than any other infection. It takes about three days for doctors to receive the results from traditional microbiology testing. They then prescribe an antibiotic to treat the infection. But about half of “infection-causing bacteria are resistant to at least one antibiotic,” according to a news release from the Geneva, Switzerland-based NESTA Foundation which funded the Longitude Prize on AMR.
“It’s impossible to overstate how critical it is to address AMR [antimicrobial resistance]. By 2050, it is predicted to cause 10 million deaths a year—matching those caused by cancer—and cost $1 trillion in additional health costs,” the news release states.
UTI are more common in women and the reason for eight million healthcare appointments annually in the US, according to Medscape.
The PA-100 AST system makes it possible for patients to provide a small urine sample during their appointments with doctors, find out if they have a bacterial infection in 15 minutes, and receive the “right antibiotic to treat it within 45 minutes,” NESTA said. Sysmex describes the PA-100 AST as an “automated phenotypic analyzer, based on EUCAST standards,” that combines “phase-contrast microscopy and nanofluidics to make available antibiograms at point of care.” It enables healthcare providers to perform antimicrobial susceptibility testing (AST) in-office rather than sending out urine samples to microbiology laboratories.
The systems works as follows, according to the Sysmex website:
As a urine sample passes through the chip, “single bacterial cells are trapped in individual channels.”
Meanwhile, “larger cellular components” are filtered and kept out of the nanofluidic chip.
Contrast-phase microscopy enables real-time monitoring of cell growth. “Resistant bacteria keep a higher growth rate during incubation, while susceptible ones grow slowly or lyse.”
Expert computer software identifies that bacterial strain, delivers an “easy to interpret antibiogram after assay completion” and provides an “informed prescription decision” on which antibiotic is expected to fight the infection.
“The PA-100 AST System challenges bacteria present in a patient’s urine with microscopic quantities of antibiotics in tiny channels embedded in a cartridge the size of a smartphone,” said Mikael Olsson, CEO and co-founder of Sysmex Astrego, in The Microbiologist.
“We rapidly pinpoint whether a bacterial infection is present and identify which antibiotic will actually kill the bugs, guiding doctors only to prescribe antibiotics that will be effective,” he added.
Sysmex is conducting more studies in the UK and working with regulators in Europe for clearances, according to Olsson.
Older Antibiotics May Make Comeback
It’s possible that use of the PA-100 system to identify the best antibiotic to treat infections could lead to a resurgence in the use of previously retired antibiotics.
“Roughly 25-30% of patients have infections resistant to older first-line antibiotics which have been retired as a result; this means the remaining 70-75% of patients could still benefit from those older drugs,” Pathology in Practice reported, adding, “Since the PA-100 AST System identifies which specific antibiotic can treat an infection, it will likely allow retired antibiotics to be brought back into service because the test is able to demonstrate when an infection is susceptible to their effects.”
Many people could benefit from the older antibiotics, Challenge Works noted.
Revolutionizing Healthcare
The Sysmex Astrego’s PA-100 AST System is a significant development.
“Currently, I send the urine sample off for analysis, and it usually takes around three days to come back with results,” said Sherry Taylor, MD, UK National Health Service, Temple Fortune Medical Group, London, in the Challenge Works news release. “Having a bedside test that would enable rapid diagnosis through antibiotic susceptibility testing would revolutionize general practice and patient care. It’s all about using antibiotics only when necessary and appropriate.”
Each individual test costs about €25 (US$25.72), The Guardian reported, adding that ramped up production may lower the price.
The PA-100 AST System is the latest example of a diagnostic/therapeutic solution developed in Europe rather than the US, which is often slower to award regulatory clearance.
It also is another test that will be performed outside of traditional clinical laboratory settings, demonstrating the trend to move medical laboratory tests closer to patients.
Diagnostic test incorporates artificial intelligence and could shorten the time clinical laboratories need to determine patients’ risk for antimicrobial resistance
Sepsis continues to be a major killer in hospitals worldwide. Defeating it requires early diagnosis, including antimicrobial susceptibility testing (AST), and timely administration of antibiotics. Now, in a pilot study, scientists at Seoul National University in South Korea have developed a new clinical laboratory test that uses artificial intelligence (AI) to pinpoint the condition sooner, enabling faster treatment of the deadly bacterial infection.
Sepsis, also known as septicemia or blood poisoning, is a serious medical condition that occurs when the body overreacts to an infection or injury. This often takes place in hospitals through blood-line infections and exposure to deadly bacteria. The dangerous reaction causes extensive inflammation throughout the body. If not treated early, sepsis can lead to organ failure, tissue damage, and even death.
Research teams around the world are creating new technologies and approaches to slash time to answer from when blood specimen is collected to a report of whether the patient is or is not positive for sepsis. The Seoul National University scientists’ new approach is yet another sign for microbiologists and clinical laboratory managers of the priority test developers are giving to solving the problem of diagnosing sepsis faster than using blood culture methodology, which requires several days of incubation.
“Sepsis strikes over 40 million people worldwide each year, with a mortality rate ranging from 20% to 50%,” said Sunghoon Kwon, PhD (above), professor of electrical and computer engineering at Seoul National University and senior author of the study, in an interview with The Times in the UK. “This high mortality rate leads to over 10 million deaths annually. Thus, accurate and prompt antibiotic prescription is essential for treatment,” he added. Clinical laboratories play a critical role in the testing and diagnosis of sepsis. (Photo copyright: Seoul National University.)
Reducing Time to Diagnosis
Seoul National University’s approach begins with drawing a sample of the patient’s blood. The researchers then attach special peptide molecules to magnetic nanoparticles and add those nanoparticles to the blood sample. The particles bind to the harmful pathogens in the blood.
The harmful bacteria are then collected using magnets. Their DNA is extracted, amplified, and analyzed to establish the type of microbes that are present in the sample.
The pathogens are exposed to antibiotics and an AI algorithm evaluates their growth patterns to forecast what treatments would be most beneficial to the patient. This last step is known as antimicrobial susceptibility testing or AST.
“The principle is simple,” said Sunghoon Kwon, PhD, professor of electrical and computer engineering at Seoul National University and senior author of the study, in a Nature podcast. “We have a magnetic nanoparticle. The surface of the magnetic nanoparticle we coat in a peptide that can capture the bacteria.”
Kwon is the CEO of Quantamatrix, the developer of the test.
The complete process can be performed on one machine and results are available in about 12 hours, which reduces typical AST time by 30 to 40 hours when compared to traditional processes.
“Sepsis progresses very quickly, with the survival rate dropping with each passing hour,” Kwon told The Times UK. “Every minute is crucial.”
Preventing Antimicrobial Resistance
The team assessed the performance of their test on 190 hospital patients who had a suspected sepsis infection. The test achieved a 100% match in the identification of a bacterial species. The test also achieved an efficiency of 96.2% for capturing Escherichia coli (E. coli) and 91.5% for capturing Staphylococcus aureus.
“Treatment assessment and patient outcome for sepsis depend predominantly on the timely administration of appropriate antibiotics,” the authors wrote in Nature.
“However,” they added, “the clinical protocols used to stratify and select patient-specific optimal therapy are extremely slow,” due to existing blood culture procedures that may take two or three days to complete.
“The microbial load in patient blood is extremely low, ranging between 1 and 100 colony-forming units (CFU) ml−1 and is vastly outnumbered by blood cells,” the study authors explained. “Due to this disparity, prior steps—including blood culture (BC) to amplify the number of pathogens followed by pure culture to subculture purified colonies of isolates—have been essential for subsequent pathogen species identification (ID) and AST.”
Further research, studies and regulatory approval are needed before this technique becomes available, but the South Korean scientists believe it could be ready for use within two to three years. They also state their test can help prevent antimicrobial resistance (AMR) and bolster the strength of existing antibiotics.
Previous Studies
The Seoul National University study is just the latest effort by scientists to develop faster methods for clinical laboratory testing and diagnosing of sepsis.
In September, Dark Daily reported on a similar test that uses digital imaging and AI to determine sepsis risk for emergency room patients.
According to the Centers for Disease Control and Prevention (CDC), at least 1.7 million adults develop sepsis annually in the US, and that at least 350,000 die as a result of the condition. CDC also lists sepsis as one of the main reasons people are readmitted to hospitals.
Microbiologists and clinical laboratory managers should be aware that scientists are prioritizing the creation of new testing methods for faster detection of sepsis. Various research teams around the world are devising technologies and approaches to reduce the time needed to diagnose sepsis to improve patient outcomes and save lives.
A 1999 case involving California phlebotomist charged with reusing needles resulted in similar widespread testing of thousands of patients
Because of possible exposure to HIV, hepatitis B, and hepatitis C from a healthcare worker, thousands of patients treated in multiple hospitals in different states are being offered free clinical laboratory testing. This situation is attracting national media attention and is a reminder to pathologists and medical laboratory professionals of the increased transparency that is being given to different types of medical errors that expose patients to risk.