News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

How Will Clinical Laboratories Collect Samples if Telehealth Replaces Traditional Doctor’s Office Visits?

COVID-19 has made telehealth an important tool. New technologies may help clinical laboratories collect blood samples ordered by physicians treating patients remotely

Even before COVID-19, telehealth services were gaining in popularity. But the SARS-CoV-2 pandemic fully opened the door to widespread use of mobile healthcare (mHealth) technologies. This has had an on-going impact on clinical laboratories.

Pre-pandemic, if a patient visited a healthcare provider and that provider ordered medical laboratory tests, the patient could simply walk down the hall to the lab’s patient service center and provide a blood sample. But when patients and providers meet through telehealth services, it is not so easy for lab personnel to collect samples for testing.

Several questions face healthcare providers and clinical laboratories as the pandemic subsides:

  • Will telehealth remain popular?
  • Does it benefit patient care?
  • Can physicians fit it into their workflows?
  • Will it continue to be reimbursed fairly?

COVID-19 Gives Telehealth Adoption a Big Boost

Telemedicine became important very quickly as SARS-CoV-2 coronavirus infections spread in early 2020. And not just in the United States. Clinicians worldwide began to embrace mHealth technology as a method of delivering care in a way that reduced the transmission of the virus.

The number of telemedicine consultations has declined since April 2020 but continues to be significantly higher than before the pandemic. It is also interesting to note that 90% of telemedicine visits were by phone in Australia and Canada, according to an article published in JAMA Network, titled, “Paying for Telemedicine After the Pandemic.”

Ateev Mehrotra, MD, MPH (above), Associate Professor of Health Care Policy, Harvard Medical School, and Associate Professor of Medicine and Hospitalist, Beth Israel Deaconess Medical Center (BIDMC) headshot image
“At its peak in April 2020, telemedicine was responsible for 38% of all ambulatory visits among Australia’s Medicare program, 42% of all ambulatory visits for individuals insured by a US commercial insurer, and 77% of all ambulatory visits among people in Ontario, Canada,” wrote Ateev Mehrotra, MD, MPH (above), Associate Professor of Health Care Policy, Harvard Medical School, and Associate Professor of Medicine and Hospitalist, Beth Israel Deaconess Medical Center (BIDMC), et al, in the Jama Network article. Clinical laboratory testing was part of all of that and continues to find its way in this new world of mobile healthcare. (Photo copyright: Managed Healthcare Executive.)

Telehealth Popular with Community Health Centers but Disparities Remain

In “Community Health Centers Lead in Telehealth Adoption During Pandemic,” the National Association of Community Health Centers, (NACHC) reported that, in the US, 98% of community health centers used telehealth services.

One of the big issues with telehealth, according to the NACHC, is that not all patients have access to the technology necessary for telehealth to be a viable alternative to traditional office visits. And that patients who use NACHC clinics tend to be “low income, minority, and uninsured or publicly insured.”

Thus, the NACHC lists “inadequate broadband” as one of the biggest issues regarding the continued use of telehealth. “Patients without reliable internet or the necessary technology still face difficulties accessing services, which has resulted in forgone or delayed care,” the NACHC noted.

A study, titled, “Who Is (and Is Not) Receiving Telemedicine Care During the COVID-19 Pandemic,” published in the American Journal of Preventative Medicine (AJPM), confirms the findings of the NACHC. “The COVID-19 pandemic has affected telehealth utilization disproportionately based on patient age, and both county-level poverty rate and urbanicity.”

Although in-person visits declined by 50%, the AJPM study’s authors noted that telehealth did not completely bridge the gap, particularly in areas where there were higher levels of poverty.

Physician Practices Are Businesses Too

The pandemic hurt businesses of all types, including independent physician’s offices. Approximately 8% of practices closed due to the pandemic, and 4% expect they will shut down within the next year. Along with the financial burden of shutdowns, physicians are burning out, Fast Company reported.

Organizations now have the technology in place and some patients have learned to utilize the service. However, the situation does raise important questions:

  • Will telehealth remain a critical component of healthcare in the future?
  • As physician’s offices close, will telehealth fill the gap?

Telehealth and Payment

Becker’s Hospital Review asked nine hospital CIOs if telehealth would “have staying power.” Every executive mentioned either reimbursement or payers in their response. Therefore, whether telehealth remains a viable method of care delivery may depend more on who will pay for it and less on popularity or patient access.

During the COVID-19 pandemic, CMS revised the rules surrounding telehealth. This allowed practitioners to charge the same for telehealth visits as they would for in-person visits. Many private payers followed suit as well. However, those rules were temporary and it is not certain that they will be extended.

“Payers must continue to reimburse for telehealth visits,” Mark Amey, CIO, Alameda Health System, told Becker’s Hospital Review. “This has been approved with emergency orders, but there are questions on whether this will become permanent. The sooner this is addressed and resolved, the sooner organizations can make sure they are investing in permanent—not temporary—solutions.”

How Does This Affect Clinical Laboratories?

In “COVID-19 Is a Catalyst for Remote Sampling and Telemedicine,” the American Association for Clinical Chemistry (AACC) examined the trend toward at-home testing.

Tests that use nasal swabs and saliva have seen an enormous boom thanks to demand for COVID-19 testing that can be done at home, and COVID-19 antibody tests also are in high demand. Additionally, direct-to-consumer (DTC) tests that use blood samples also are seeing advancements. However, none of those factors—not even reimbursement—help medical laboratory managers who are trying to identify new methods of collecting specimens for testing that support telehealth doctors.

“Innovations in blood sample collection are proving their utility and validity just in time for the home-based medicine push,” noted the AACC. The article goes on to describe Mitra microsampling devices, produced by Neoteryx. These devices collect 20 uL of blood via a finger prick and are already used by organ transplant recipients.

Another method involves the use of dried blood spots.

Though COVID-19 is a factor, it is not the only one driving development of new healthcare technologies that may expand options for medical laboratories looking for ways to collect samples remotely.

In “‘There’s an App for That’ is Becoming the Norm in Healthcare as Smartphones Provide Access to Patient Medical Records and Clinical Laboratory Test Results,” Dark Daily looked at smartphone apps in mobile health (mHealth) that monitor patients’ conditions and report results to doctors. And in “McKinsey and Company Says the COVID-19 Pandemic is Accelerating Six Critical Trends in Healthcare, at Least One Which Would Benefit Anatomic Pathologists,” we noted that Telehealth was among several critical trends in healthcare accelerated by the COVID-19 pandemic, and how the pandemic is reshaping healthcare, especially in the realm of mobile healthcare technology.

As the COVID-19 pandemic progresses, we will continue to bring you news about healthcare technology that can enhance clinical laboratories’ ability to collect patient samples, include advancements in remote sampling techniques and technologies.

—Dava Stewart

Related Information:

Paying for Telemedicine After the Pandemic

Community Health Centers Lead in Telehealth Adoption During Pandemic

Who Is (and Isn’t) Receiving Telemedicine Care During the COVID-19 Pandemic

As Thousands of Doctors’ Offices Shutter, Telehealth Becomes a Way of Life

Will Telehealth Have Staying Power After the Pandemic? 9 CIOs Weigh In

COVID-19 Is a Catalyst for Remote Sampling and Telemedicine

“There’s an App for That” Is Becoming the Norm in Healthcare as Smartphones Provide Access to Patient Medical Records and Clinical Laboratory Test Results

McKinsey and Company Says the COVID-19 Pandemic Is Accelerating Six Critical Trends in Healthcare, at Least One Which Would Benefit Anatomic Pathologists

Guidehouse Healthcare Experts Outline Six Ways COVID-19 Pandemic Is Accelerating Healthcare Transformation

Airlines Are Partnering with Health Companies and Clinical Laboratories to Implement At-Home COVID-19 Testing Prior to Flights

Because air travel volumes are low, experts believe it is timely to develop COVID-19 testing systems and gain insight on which protocols are most effective

As the COVID-19 pandemic surges on, several international airlines now require customers to complete at-home COVID-19 testing before they can travel. This is triggering unusual business practices. For example, one airline allows its passengers to use frequent flier miles to purchase mail-in COVID-19 test kits.

Frequent Flyer Miles for COVID-19 Testing

Across the United States, Hawaii has one of the lowest rates of infection, partly thanks to the state’s strict quarantine regulations. In a state, however, that depends on tourism for its economic health, the pandemic has caused serious financial difficulties. In an effort to prevent spread of the coronavirus while also encouraging tourism, Hawaiian Airlines now offers “Pre-travel COVID-19 Test Options” on its website.

To be allowed to skip the state’s mandatory 14-day self-quarantine before arriving on the islands, flyers can take a pre-travel coronavirus test with the following conditions:

  • The test must be from a state-approved testing provider.
  • The test must be administered no more than 72 hours prior to the scheduled departure time of the final leg to Hawaii.
  • For trans-pacific travel, test results must be received prior to flight departure.

Additionally, the airline accepts frequent flyer miles to pay for mail-in COVID-19 tests. In exchange for 14,000 HawaiianMiles, a passenger receives a test kit in the mail. The kit features a video call during which a healthcare professional guides the consumer on taking a saliva sample. The user then ships the sample to a qualified clinical laboratory. Results are returned electronically within 24 hours of the lab receiving the sample.

Hawaii’s COVID-19 portal states, “The state of Hawaii will ONLY accept Nucleic Acid Amplification Test (NAAT) from a certified Clinical Laboratory Improvement Amendment (CLIA) lab test results from Trusted Testing and Travel Partners” that are participating in the state’s pre-travel testing program. Honolulu and Maui are the only two arrival airports allowed. A negative result must have come from a test performed within 72 hours prior to the final leg of the passenger’s trip to Hawaii, according to the portal.

“A negative pre-travel test is an alternative to two weeks in self-isolation for arrivals to the archipelago,” the UK’s Independent reported.

JetBlue and Vault Health Partner to Offer COVID Testing to Airline Passengers

In another instance of an airline getting involved in at-home testing, JetBlue (NASDAQ:JBLU) is partnering with Vault Health to offer at-home testing. The process is similar to the Hawaiian Airlines program. However, rather than purchasing the test with frequent flyer miles, JetBlue offers polymerase chain reaction (PCR) tests at a discount.

Business Travel News reported that passengers must provide a confirmation code while ordering the $119 test from Vault Health’s webpage. “Vault provides a kit for an at-home saliva test, and users administrate it while on a video chat supervised by Vault to ensure the test is done properly. The user sends it overnight to a clinical laboratory and the results are provided within 72 hours,” Business Travel News stated.

Joanna Geraghty of JetBlue
“We continue to hear from health officials that [COVID-19] testing is incredibly important in the fight against the coronavirus, and we want to make sure our customers have options for testing, especially prior to travel,” said Joanna Geraghty, President and Chief Operating Officer, JetBlue, in a press release. “As more and more regions reopen, many are requiring test results to enter. Now with easier testing options, those safety requirements may not be a deterrent for travel, but rather provide greater public health and peace of mind with little inconvenience.” (Photo copyright: Spectrum News NY1.)

In “Coronavirus Testing Before Flying Could Become the Norm as Airlines Try to Boost Confidence and Woo Travelers,” the Washington Post reported, “There is no common standard, so it has been left to airlines and airports to design their own SARS-CoV-2 testing programs and for travelers to sort out requirements for their particular destination.”

In addition to airlines such as Hawaii Airlines and JetBlue instituting programs for coronavirus testing, some airports are as well. Tampa International Airport, for example, test-piloted a voluntary testing program for all arriving and departing passengers from October 1st to October 31st. The airport partnered with BayCare, a 15-hospital Tampa area healthcare network, to provide both rapid antigen and PCR tests.

“Testing services will be offered on a walk-in basis … seven days a week from 8 a.m. until 2 p.m. The pilot will be open to all ticketed passengers who are flying or have flown within three days and can show proof of travel. The PCR COVID-19 test costs $125 and the antigen test costs $57,” a press release stated.

Tampa Airport CEO Joe Lopano told the Washington Post, “This could be—especially if adopted by other airports—another way to instill confidence.”

COVID-19 Testing by Retailers Expanding as Well

Travelers aren’t the only people who need testing. Some employers also are requiring negative tests before employees can return to work.

In “Costco Begins Selling an At-Home Self-Collection COVID-19 Test Kit; One of 12 Kits That Have Received FDA Emergency Use Authorization,” Dark Daily reported on retail giant Costco’s (NASDAQ:COST) response to increased demand for COVID-19 testing by offering direct-to-consumer, at-home test kits to its members. The kits sell at two price points: $129 for a “basic” kit, and $139 for a kit that includes “Video observation for travel.” The more expensive test is accepted by Hawaii for its Trusted Testing Partner Program.

As with all at-home kits, the consumer collects their own specimen and sends it off to a qualified clinical laboratory for processing. AZOVA, a telehealth company, supplies the kits to Costco for resale and provides a smartphone app where customers can check and display the test results.

P23 Labs’ TaqPath SARS-CoV-2 assay is the test being used, which, according to P23, “has a 98% sensitivity and 99% specificity,” Business Insider reported.

When COVID-19 Testing Fails

Of course, coronavirus testing isn’t 100% guaranteed. The Independent reported in November that a passenger on a Dubai to New Zealand flight who had tested negative prior to flying, was, in fact, positive for coronavirus and had infected seven other passengers during the flight. New Zealand’s Institute of Environmental Science and Research conducted and published a study following the incident, titled, “A Case Study of Extended In-Flight Transmission of SARS-Cov-2 En Route to Aotearoa New Zealand.”

The researchers found that “All seven SARS-CoV-2 genomes were genetically identical, with the exception of a single mutation in one case, and all genomes had five signature mutations seen in only six other genomes from the >155,000 genomes sequenced globally. Four of these six related genome sequences were from Switzerland, the country of origin of the suspected index case.”

They added, “By combining information on disease progression, travel dynamics, and genomic analysis, we conclude that at least four in-flight transmission events of SARS-CoV-2 likely took place.”

At-home test kits for COVID-19 are here to stay. That large businesses in multiple industries are now partnering with COVID-19 test developers and clinical laboratory companies to accomplish testing of customers and employees means independent labs that process coronavirus testing can look forward to increasing COVID-19 testing business.

“We need to be using the time now, when [travel] volumes are relatively low, to test the systems and gain insight on which protocols are most effective,” Mara Aspinall, biomedical diagnostics professor at Arizona State University, President and CEO of the Health Catalysts Group, an investment and advisory firm, and former President/CEO of Ventana Medical Systems (now Roche Tissue Diagnostics), a billion-dollar division of Swiss pharmaceutical and diagnostics manufacturer Roche, told the Washington Post.

—Dava Stewart

Related Information:

‘Swap Frequent-Flyer Miles for COVID Test’ Says Airline

Negative COVID-19 Test Result Required Prior to Departure to Avoid 14-Day Quarantine in Hawaii. Tests ONLY Accepted from TRUSTED TESTING AND TRAVEL PARTNERS

JetBlue to Give Passengers At-Home Covid-19 Testing Access

JetBlue to Offer At-Home Pre-Travel COVID-19 Tests

JetBlue and Vault Health Partner to Make At-Home COVID-19 Tests More Widely Available to Customers

Coronavirus Testing Before Flying Could Become the Norm as Airlines Try to Boost Confidence and Woo Travelers

TPA Launches First in the Nation COVID-19 Testing for All Departing and Arriving Passengers

Domestic U.S. Travel Advisories

American Airlines Expands At-Home Coronavirus Testing

COVID: Passenger Infected Four Others on Flight After Testing Negative, Report Says

A Case Study of Extended In-Flight Transmission of SARS-Cov-2 En Route to Aotearoa New Zealand

Costco Begins Selling an At-Home Self-Collection COVID-19 Test Kit; One of 12 Kits That Have Received FDA Emergency Use Authorization

Costco Begins Selling an At-Home Self-Collection COVID-19 Test Kit; One of 12 Kits That Have Received FDA Emergency Use Authorization

It’s the latest example of how the ongoing SARS-CoV-2 pandemic is making it possible for new competitors to enter the clinical laboratory marketplace

In response to increasing demand for COVID-19 testing, warehouse retailer Costco (NASDAQ:COST) is seizing the opportunity to sell at-home saliva self-collection test kits to its customers. It makes Costco the latest company to enter the market for SARS-CoV-2 testing and compete against clinical laboratories.

And these non-invasive tests—which are as simple as spitting saliva into a container and mailing it to a medical laboratory—may be more effective at detecting the SARS-CoV-2 coronavirus than uncomfortable nasal swabs. 

Costco is selling its COVID-19 Saliva PCR Test Kit for $129.99 ($139.99 with video observation). Included in the price is a self-collection device, a biohazard bag, a sticker for personal data, and a box for shipping the saliva to a medical laboratory.

The test is actually P23 Labs’ TaqPath SARS-CoV-2 assay and will be administered by Azova, a digital health services provider. P23 says their test has a 98% sensitivity and 99% specificity, according to Business Insider.

The Costco P23 test kit  from Thermo Fisher Scientific
The Costco P23 test kit above, “uses parts from Thermo Fisher Scientific and works with collection kits made by testing companies Everlywell and OraSure Technologies, according to the FDA and a P23 spokesperson,” Business Insider reported. “Samples are tested in [P23’s] lab in Little Rock, Arkansas.” (Photo copyright: Costco.)

Saliva-Collection Kits Gain Popularity and FDA Emergency Use Authorizations

P23 Labs’ assay is one of 12 COVID-19 home tests that have received US Food and Drug Administration (FDA) Emergency Use Authorization (EUA). Three of which use saliva specimens.

The FDA’s EUA authorization summary for the P23 assay states it is “for use with saliva specimens that are self-collected at home or in a healthcare setting with or without the supervision and/or assistance of [a healthcare provider (HCP)], by individuals using the P23 At-Home COVID-19 Test Collection Kit, when determined to be appropriate by an HCP based on the results of a COVID-19 medical questionnaire. This test is also for use with nasal swab specimens that are self-collected at home or in a healthcare setting with or without the supervision and/or assistance of an HCP by individuals.”

In a news release announcing the first diagnostic test using saliva specimens, oncologist and FDA Commissioner Stephen Hahn, MD, said that “Authorizing additional diagnostic tests with the option of at-home sample collection will continue to increase patient access to testing for COVID-19. This (saliva sample collection) provides an additional option for the easy, safe, and convenient collection of samples required for testing without traveling to a doctor’s office, hospital, or testing site.” That test was manufactured by Clinical Genomics laboratory of Rutgers New Jersey Medical School.

Below is a list from Business Insider for at-home self-collection SARS-CoV-2 coronavirus tests that have received an FDA EUA. Most can be ordered online, and prices range from $109 to $149, which may be covered by insurance depending on the health plan.

Saliva coronavirus home tests:

Nasal swab coronavirus home tests:

Yale Study Indicates Saliva Tests Have Greater Detection Sensitivity over Swab

Should consumers choose COVID-19 saliva tests over nasal cavity swab tests? Maybe.

A study led by the Yale School of Public Health found and “conducted at Yale New Haven Hospital with 44 inpatients and 98 health care workers—found that saliva samples taken from just inside the mouth provided greater detection sensitivity and consistency throughout the course of an infection than the broadly recommended nasopharyngeal (NP) approach. The study also concluded that there was less variability in results with the self-sample collection of saliva,” states a Yale University news release.

In, “Saliva Is More Sensitive for SARS-CoV-2 Detection in COVID-19 Patients than Nasopharyngeal Swabs,” published on the preprint server medRxiv, Yale researchers also noted a saliva test—as compared to a test using a nasal swab—is less invasive and more likely to be reliably self-administered. However, they remain cautious about jumping to saliva as a specimen versus nasal swabs.

Anne Wyllie, PhD
Anne Wyllie, PhD, Associate Research Scientist at Yale School of Public Health, told Time magazine, “Saliva itself is a newer diagnostic method, and a lot of people don’t know how to work with it, are scared to work with it, or not sure how to work with it. Just because a protocol is working with swabs doesn’t mean the same protocol will work with saliva.” Nevertheless, public demand for less invasive COVID-19 testing means clinical laboratories may soon be receiving more requests for processing saliva over nasal swabs. (Photo copyright: Yale University.)

Yale received FDA EUA for SalivaDirect, a real-time quantitative polymerase chain reaction (RT-qPCR) for detection of SARS-CoV-2. However, SalivaDirect is not an “at-home” test. It requires saliva samples to be self-collected into a sterile container in the presence of a healthcare professional, and is being provided by Yale to clinical laboratories as an “open source” protocol, the FDA said in a news release.

“We are trying to work with smaller local labs that want to get up and running to support schools, community groups, universities, and colleges,” Wyllie told Time.

In “Saliva or Nasopharyngeal Swab Specimens for Detection of SARS-CoV-2,” published in the New England Journal of Medicine (NEJM), Wyllie and others suggest saliva can be just as effective in detecting the coronavirus that causes COVID-19. In their study, COVID-19 patients who were tested by healthcare workers using nasopharyngeal swabs were then asked to collect their own saliva samples.

The researchers found that “Collection of saliva samples by patients themselves negates the need for direct interaction between healthcare workers and patients. This interaction is a source of major testing bottlenecks and presents a risk of nosocomial infection. Collection of saliva samples by patients themselves also alleviates demands for supplies of swabs and personal protective equipment. Given the growing need for testing, our findings provide support for the potential of saliva specimens in the diagnosis of SARS-CoV-2 infection.”

The Yale scientists used primer sequences identified by the Centers for Disease Control and Prevention to detect the coronavirus. They found more SARS-CoV-2 RNA in saliva specimens than in the nasopharyngeal swab specimens. Also, 81% of saliva samples were positive one to five days after diagnosis, as compared to 71% of the nasopharyngeal swab specimens. 

“The findings suggest saliva specimens and nasopharyngeal swab specimens have at least similar sensitivity in the detection of SARS-CoV-2 during the course of hospitalization,” the researchers wrote in their NEJM paper.

The increasing popularity of at-home COVID-19 testing—along with studies showing that results improve when specimens are self-collected—suggest that medical laboratory managers should closely monitor the rise of COVID-19 home tests, as well as progress being made in saliva for diagnosing the SARS-CoV-2 coronavirus.

Further, it might be a smart strategy for clinical laboratories with the capability to perform this testing to approach retailers in their region and establish relationships where retailers sell the collection kits, and the lab performs the test and reports the results.

Since patients pay cash for the SARS-CoV-2 tests at the time they purchase the kits, clinical labs are guaranteed payment for the tests without the need to submit claims to consumers’ insurance companies. That’s another benefit to these types of arrangements.

—Donna Marie Pocius

Related Information:

Costco Sells At-Home COVID-19 Tests Using Saliva Samples

EUA for the P23 Labs TaqPath SARS-CoV—2 Assay

FDA Authorizes First Diagnostics Test Using Home Collection Saliva

There are 12 Coronavirus Tests You Can from Home: How They Work and How to Get One

Saliva Samples Preferable to Deep Nasal Swabs Testing for COVID-19

Saliva is More Sensitive for SARS-CoV-2 Detection in COVID-19 Patients Than Nasopharyngeal Swabs

FDA Issues Emergency Use Authorization Yale School of Public Health

COVID-19 Saliva Spit Test

Saliva or Nasopharyngeal Swab Specimens for Detection of SARS-CoV-2

FDA Issues First Approval for At-Home COVID-19 Test to LabCorp’s Pixel; Other Clinical Laboratory-Developed At-Home Test Kits May Soon Be Available to General Public

Though the potential is high for false positives and false negatives, some experts believe at-home COVID-19 testing still holds promise for slowing the spread of the coronavirus

Laboratory Corporation of America (LabCorp) is the first diagnostic test developer to receive approval from the US Food and Drug Administration (FDA) to market an at-home specimen collection kit for COVID-19. In an April 21 FDA news release, the federal agency announced it had “re-issued the emergency use authorization (EUA) for the Laboratory Corporation of America COVID-19 RT-PCR Test to permit testing of samples self-collected by patients at home using LabCorp’s Pixel by LabCorp COVID-19 Test home collection kit.”

The kit includes a nasal swab for specimen collection and a shipping package for returning the sample to a designated medical laboratory. Pixel is designed to work with LabCorp’s COVID-19 RT-PCR test, a real-time reverse transcription polymerase chain reaction (rRT-PCR) test that determines if an active SARS-CoV-2 coronavirus is present. The Pixel specimen-collection kit can be purchased for $119 on LabCorp’s website.

Presently, the Pixel kit is only available to healthcare workers and first responders who are symptomatic or who believe they may have been exposed to the virus. However, in a news release LabCorp stated that it “intends to make COVID-19 self-collection kits available to consumers in the coming weeks.”

Though purchasers have to pay for the kit themselves, a notice on LabCorp’s website states that the company “will work with you to get your purchase reimbursed by your health plan,” and that LabCorp is “actively working on a more streamlined solution, so you don’t have to pay up front.” LabCorp created a COVID-19 microsite where customers can receive future updates on the Pixel at-home test kit.

Adam Schechter LabCorp and Donald Trump
In LabCorp’s news release, Adam Schechter (at podium), President and CEO, emphasized his company’s commitment to helping patients and healthcare providers fight the COVID-19 crisis through LabCorp’s “leading testing capabilities and deep scientific and research expertise,” adding, “Our at-home collection kits are designed to make it easier and safer to test healthcare workers and first responders during this important time.” (Photo copyright: Yahoo News/Chip Somodevilla.)

Though Finger-stick At-home Tests Prove Inaccurate, Optimism Remains

As COVID-19 wreaks havoc around the globe, in vitro diagnostic (IVD) developers, clinical laboratory companies, and healthcare professionals have scrambled to find an accurate, cost effective way to definitively test individuals for the coronavirus.

Complicating matters is the fact that many people are asymptomatic carriers who show no symptoms of the illness, but who can infect others.

Earlier this year, the UK government was optimistic that an at-home serological antibodies test would enable its citizens to collect their own blood specimens via finger sticks, and that the test would provide a way for individuals to test themselves for the coronavirus.

According to CNBC, the United Kingdom (UK) ordered millions of antibody tests, but after disappointing results, returned the kits and requested a refund.

The New York Times (NYT) reported that the British government paid $20 million upfront for two million untried antibody test kits from two Chinese companies: AllTest Biotech in Hangzhou and Wondfo Biotech in Guangzhou. Then, UK government officials announced the tests would be available to citizens within weeks, and Prime Minister Boris Johnson publicly declared the tests would be “simple as a pregnancy test.”

Neither of those predictions would come to pass. In April, British researchers announced that none of the coronavirus tests they had tried were accurate enough to be of any value.

“Sadly, the tests we have looked at to date have not performed well,” said Sir John Bell, Regius Professor of Medicine, University of Oxford, Medical Sciences Division, in a blog post titled, “Trouble in Testing Land.”

“We see many false negatives … and we also see false positives,” he wrote, adding that the UK “is now uniquely positioned to evaluate and find the optimal test for this disease, but no country has found a kit that is up to standard.” He also noted that locating such a test should be possible, but that it may take another month or more to find.

The Chinese companies defended their tests. In the Chinese newspaper Global Times, Wondfo stated its tests are “intended only as a supplement for patients who had already tested positive for the virus,” and on its website, AllTest stated its tests should “only [be] used by professionals,” not by patients at home, the New York Times reported.

Will At-home COVID-19 Testing Ever Work?

At-home testing kits for COVID-19 may seem like a great solution to the testing dilemma, but they could also prove to be problematic. “This may not be as good as it sounds,” Edo Paz, MD, a New York Presbyterian-trained cardiologist, Clinical Director at Heartbeat Health, and Vice President Medical, at K Health, a digital health company located in New York City, told CNET.

“Collecting a proper sample from the nose or mouth takes training and shipping delays of the specimen back to the lab could impact the quality of the sample,” he said, adding, “There could be a high false negative rate, leading people who are actually infected to believe they are not, potentially contributing to the crisis.”

Clinical pathologists have a unique understanding of the challenges that must be overcome for capillary blood to be of any use for testing, and of the potential for mishandling of specimens inherent in at-home test kits.

Nevertheless, with the SARS-CoV-2 coronavirus continuing to infect people around the world, the number and variety of tests will likely increase, which could create an upsurge in business for clinical laboratories and present new challenges for performing COVID-19 tests.

—JP Schlingman

Related Information:

Coronavirus (COVID-19) Update: FDA Authorizes First Test for Patient At-Home Sample Collection

LabCorp’s At-home COVID-19 Test Kit is the First to be Authorized by the FDA

LabCorp COVID-19 At-Home Test Kit Receives FDA Emergency Use Authorization

LabCorp COVID-19 RT-PCR Test EUA Summary

Pixel by LabCorp COVID-19 Test (At-Home Kit)

Trouble in Testing Land

U.K. Paid $20 Million for New Coronavirus Tests. They Didn’t Work

Hopes for At-home Finger-prick Coronavirus Test Dashed after Accuracy is Questioned

Can You use a Coronavirus Home Testing Kit? Not Yet, and Here’s Why

Antibody Tests Could be Key to Reopening the Country. Here’s How They Work.

Dozens of Coronavirus Antibody Tests on the Market Were Never Vetted by the FDA, Leading to Accuracy Concerns

Saarland University Researchers Use Blood Samples from Zoo Animals to Help Scientists Find Biomarkers That Speed Diagnoses in Humans

Using animal blood, the researchers hope to improve the accuracy of AI driven diagnostic technology

What does a cheetah, a tortoise, and a Humboldt penguin have in common? They are zoo animals helping scientists at Saarland University in Saarbrücken, Germany, find biomarkers that can help computer-assisted diagnoses of diseases in humans at early stages. And they are not the only animals lending a paw or claw.

In their initial research, the scientists used blood samples that had been collected during routine examinations of 21 zoo animals between 2016 and 2018, said a news release. The team of bioinformatics and human genetics experts worked with German zoos Saarbrücken and Neunkircher for the study. The project progresses, and thus far, they’ve studied the blood of 40 zoo animals, the release states.

This research work may eventually add useful biomarkers and assays that clinical laboratories can use to support physicians as they diagnose patients, select appropriate therapies, and monitor the progress of their patients. As medical laboratory scientists know, for many decades, the animal kingdom has been the source of useful insights and biological materials that have been incorporated into laboratory assays.

“Measuring the molecular blood profiles of animals has never been done before this way,” said Andreas Keller, PhD, Saarland University Bioinformatics Professor and Chair for Clinical Bioinformatics, in the news release. The Saarland researchers published their findings in Nucleic Acids Research, an Oxford Academic journal.

“Studies on sncRNAs [small non-coding RNAs] are often largely based on homology-based information, relying on genomic sequence similarity and excluding actual expression data. To obtain information on sncRNA expression (including miRNAs, snoRNAs, YRNAs and tRNAs), we performed low-input-volume next-generation sequencing of 500 pg of RNA from 21 animals at two German zoological gardens,” the article states.

Can Animals Improve the Accuracy of AI to Detect Disease in Humans?

In their research, Saarland scientists rely on advanced next-generation sequencing (NGS) technology and artificial intelligence (AI) to sequence RNA and microRNA. Their goal is to better understand the human genome and cause of diseases.

However, the researchers perceived an inability for AI and machine learning to discern real biomarker patterns from those that just seemed to fit.

“The machine learning methods recognize the typical patterns, for example for a lung tumor or Alzheimer’s disease. However, it is difficult for artificial intelligence to learn which biomarker patterns are real and which only seem to fit the respective clinical picture. This is where the blood samples of the animals come into play,” Keller states in the news release.

“If a biomarker is evolutionarily conserved, i.e. also occurs in other species in similar form and function, it is much more likely that it is a resilient biomarker,” Keller explained. “The new findings are now being incorporated into our computer models and will help us to identify the correct biomarkers even more precisely in the future.”

Andreas Keller, PhD (left), and zoo director Richard Francke (right), hold a pair of radiated tortoises that participated in the Saarland University study. (Photo copyright: Oliver Dietze/Saarland University.)

Microsampling Aids Blood Collection at Zoos

The researchers used a Neoteryx Mitra blood collection kit to secure samples from the animals and volunteers. Dark Daily previously reported on this microsampling technology in, “Innovations in Microsampling Blood Technology Mean More Patients Can Have Blood Tests at Home, and Clinical Laboratories May Advance Toward Precision Medicine Goals,” November 28, 2018.

“Because blood can be obtained in a standardized manner and miRNA expression patterns are technically very stable, it is easy to accurately compare expression between different animal species. In particular, dried blood spots or microsampling devices appear to be well suited as containers for miRNAs,” the researchers wrote in Nucleic Acids Research.

Animal species that participated in the study include:

Additionally, human volunteers contributed blood specimens for a total of 19 species studied. The scientists reported success in capturing data from all of the species. They are integrating the information into their computer models and have developed a public database of their findings for future research.

“With our study, we provide a large collection of small RNA NGS expression data of species that have not been analyzed before in great detail. We created a comprehensive publicly available online resource for researchers in the field to facilitate the assessment of evolutionarily conserved small RNA sequences,” the researchers wrote in their paper.         

Clinical Laboratory Research and Zoos: A Future Partnership?

This novel involvement of zoo animals in research aimed at improving the ability of AI driven diagnostics to isolate and identify human disease is notable and worth watching. It is obviously pioneering work and needs much additional research. At the same time, these findings give evidence that there is useful information to be extracted from a wide range of unlikely sources—in this case, zoo animals.

Also, the use of artificial intelligence to search for useful patterns in the data is a notable part of what these researchers discovered. It is also notable that this research is focused on sequencing DNA and RNA of the animals involved with the goal of identifying sequences that are common across several species, thus demonstrating the common, important functions they serve.

In coming years, those clinical laboratories doing genetic testing in support of patient care may be incorporating some of this research group’s findings into their interpretation of certain gene sequences.

—Donna Marie Pocius

Related Information:

Blood Samples from the Zoo Help Predict Diseases in Humans

The sncRNA Zoo: A Repository for Circulating Small Noncoding RNAs in Animals

ASRA Public Database of Small Non-Coding RNAs

Innovations in Microsampling Blood Technology Mean More Patients Can Have Blood Tests at Home and Clinical Laboratories May Advance Toward Precision Medicine Goals

;