News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Researchers in Two Separate Studies Discover Gut Microbiome Can Affect Efficacy of Certain Cancer Drugs; Will Findings Lead to a New Clinical Laboratory Test?

If the link between certain types of gut bacteria and improved effectiveness of certain cancer treatments can be leveraged, then medical laboratories could soon have another diagnostic tool to use in supporting physicians with cancer care

From improving treatments for chronic diseases to extending lives, gut microbiome (bacteria that is part of human microbiota) has been at the forefront of developing clinical laboratory testing and anatomic pathology diagnostic technologies in recent years. Now, two studies recently published in the online journal Science confirm research that the “composition” of gut bacteria may have a significant influence on the effectiveness of certain cancer drugs.

The goal of both studies was to determine whether there was a link between gut bacteria and the efficacy of cancer drugs known as PD-1 inhibitors. These drugs are used for several types of cancer, including:

  • Melanoma;
  • Lung;
  • Bladder; and,
  • Stomach cancers.

They function by freeing up the immune system to attack cancer cells.

Greater Bacterial Diversity in Gut Brings Improved Response to PD-1 Inhibitors

One of the studies, “Gut Microbiome Modulates Response to Anti–PD-1 Immunotherapy in Melanoma Patients,” found that a microbiome populated with “good” bacteria can elevate the potency of certain drug treatments. The researchers discovered that the gut bacteria in patients who responded well to PD-1 inhibitors differed from that found in patients who did not respond to the treatment.

For this study, researchers at the MD Anderson Cancer Center at the University of Texas collected oral, gut, and fecal microbiome samples and tumor biopsies from 112 patients with advanced melanoma. Clinical laboratorians took the samples before and after PD-1 treatments. They divided the patients into two groups—responders and non-responders—and profiled each microbiome using genetic sequencing.

“What we found was impressive: There were major differences both in the diversity and composition of the gut microbiome in responders versus non-responders,” Jennifer Wargo, MD, MMSc, leader of the study, told STAT. “Those who did well had greater bacterial diversity in their gut, whereas those whose tumors didn’t much shrink had fewer varieties of microbes present.”

Melanoma patients who experienced success with PD-1 therapy had a more diverse microbiome and higher concentrations of bacteria known as Ruminococcus and Faecalibacterium. Patients involved in the study who did not respond well to PD-1 therapy had the presence of another bacterium called Bacteroidales.

Jennifer Wargo, MD (above center) with her team at the MD Anderson laboratories. The researchers cautioned that clinical trials are needed before a definitive conclusion can be reached on whether altering gut bacteria can improve the effectiveness of PD-1 therapy. “If you’re changing the microbiome, depending on how you do it, it may not help you—and it might harm you,” Wargo emphasized in STAT. “Don’t try this at home.” (Photo copyright: MD Anderson.)

Antibiotics Can Reduce Effectiveness of PD-1Therapy

The other study, “Gut Microbiome Influences Efficacy of PD-1-based Immunotherapy Against Epithelial Tumors,” discovered that some drug therapies were less effective in patients who were also taking antibiotics to treat infections shortly before beginning treatment with PD-1 drugs.

Researchers for this study, led by Laurence Zitvogel, MD, PhD, of the Gustave Roussy Cancer Campus in Villejuif, France, examined 249 patients who were given a PD-1 inhibitor for lung, kidney, or urinary tract cancers. A little over one fourth of these patients had recently taken antibiotics, which can strip the gut of essential bacteria necessary to treat infections.

The team found that patients who had ingested an antibiotic relapsed faster and did not live as long as patients who had not taken an antibiotic before receiving PD-1 therapy. When they analyzed variances between patients who responded well to treatment versus patients who did not, they detected the presence of Akkermansia muciniphila, a mucin-degrading bacterium, in the responders.

Personalized Treatment Based on Each Patient’s Gut Microbiome

The culmination of this type of research raises questions about how cancer medications may interact with microbiomes.

“Should we be profiling the gut microbiome in cancer patients going into immunotherapy?” asked Wargo in the STAT article. “And, should we also be limiting, or closely monitoring, the antibiotic use in these patients?

“This is all very context-specific, and multiple different factors need to be considered on how best to change the microbiome,” she continued. “When it comes to optimizing cancer therapy, treatments will have to be heavily personalized, based on what a patient’s gut microbiome looks like already.”

Diagnostic tests that could determine whether a certain drug will be beneficial for a patient would perform a critical role in healthcare decision-making. Since cancer drug treatments can cost tens of thousands of dollars or more, it would be advantageous to know which therapies would be optimal for individual patients. The hope is that in the future, clinicians, working with anatomic pathologists and clinical laboratories, will have the tools needed to ascertain if patient’s microbiomes will best work with a particular drug and if they would likely encounter any side effects.

—JP Schlingman

Related Information:

Patients’ Gut Bugs May Play Role in Cancer Care

Gut Microbiome Modulates Response to Anti–PD-1 Immunotherapy in Melanoma Patients

Gut Microbiome Influences Efficacy Of PD-1–Based Immunotherapy Against Epithelial Tumors

Your Gut Bacteria Could Determine How You Respond to Cutting-edge Cancer Drugs

The Bacteria in Your Gut Could Help Determine if a Cancer Therapy Will Work

Attention Microbiologists and Medical Laboratory Scientists: New Research Suggests an Organism’s Microbiome Might Be a Factor in Longer, More Active Lives

Get the Poop on Organisms Living in Your Gut with a New Consumer Laboratory Test Offered by American Gut and uBiome

Mayo Clinic and Whole Biome Announce Collaboration to Research the Role of the Human Microbiome in Women’s Diseases Using Unique Medical Laboratory Tests

EHR Systems Continue to Cause Burnout, Physician Dissatisfaction, and Decreased Face-to-Face Patient Care

New study published in the Annals of Family Medicine (AFM) indicates that despite efforts to improve EHR usability and efficiency, primary care physicians continue to spend more than 50% of their workdays on computerized physician order entry (CPOE) and other clerical tasks instead of engaging in direct patient care

Do electronic health record (EHR) systems improve or degrade the productivity of physicians? That question has been the subject of robust debate. Now comes a new study in a peer-reviewed journal with a surprising finding: physicians spend up to 50% or more of their workday on EHR-related tasks.

In theory, EHRs offer a wealth of benefits over traditional paper-based systems. In practice, however, between interoperability concerns and implementation costs, they have proven a daunting undertaking for even the largest healthcare systems.

While EHRs might offer easy access to patient data—including medical laboratory records and anatomic pathology reports—this information doesn’t enter itself into databases or make itself instantly accessible. That requires human interaction, which is time consuming and prone to errors.

Thus, research from the American Medical Association (AMA) and the University of Wisconsin revealing that the time it takes to enter data, address communications, and perform other clerical tasks adds up to more than 50% of a physician’s workday is of paramount importance. That’s because physician dissatisfaction and departures from medical practice have increased each year since the EHR revolution began, and reports are the situation is getting worse.

In their retrospective cohort study involving 142 family medicine physicians, published in the Annals of Family Medicine (AFM), Brian G. Arndt, MD, from the School of Medicine and Public Health, Department of Family Medicine and Community Health, University of Wisconsin, et al, reported that clinicians spend 52% of their 11.4-hour workday interacting with an EHR system. On average, nearly 1.5 hours of this EHR interaction occurred outside clinic hours during physicians’ personal time. The researchers assessed interactions using event logs from the Epic EHR system spanning from July 1, 2013, to June 30, 2016.

Researchers validated their data through direct observation of 14 nonresident family medicine physicians from May through June of 2016. This observation showed similar findings. During clinical hours, 60% of physician time related to non-EHR tasks, with 40% of time devoted to EHR tasks.

Documentation Burden Leads to Physician Burnout, Dissatisfaction

“Our family medicine physicians spent 44% of their workday (157 minutes) in the EHR doing clerical and other administrative tasks,” study authors reported. “Computerized physician order entry accounted for 12.1% of their clinic hours (43 minutes) in the EHR. The burden related to order entry has been associated with clinician burnout, dissatisfaction, and intent to leave practice.”

Researchers tracked various tasks and assigned them to categories. Of the tasks tracked, only 32.1% fell under the heading of “medical care.” Reviewing chart notes, chart medications, and problem lists topped medical care tasks.

Review of clinical laboratory results in charts ranked near the bottom, with only 2.5% of the total time spent performing medical care tasks. These tasks, however, could offer opportunities for medical laboratories to help physicians identify opportunities to optimize reporting and test-ordering processes and improve productivity for clinicians who are responsible for most of the data entry burden associated with EHRs.

One potential solution to EHR burnout involves the use of medical scribes who work with physicians during and after a patient’s visit inputting encounter data. Alan Bank, MD, cardiologist at Allina Health, and medical scribe Jaeda Roth, are shown above during a patient visit. Bank told the StarTribune  that he’s convinced scribes help doctors get more done and reduce billing errors. (Photo and caption copyright: Elizabeth Flores/StarTribune.)

Researchers also questioned the EHR’s role as a communication or telemedicine hub. “There is insufficient evidence that such asynchronous care improves health outcomes, cost, and overall healthcare use,” they noted.

However, even for intra-practice communications between healthcare professionals, EHRs may not be the most efficient approach. “Face-to-face communication is associated with increased efficiency,” the researchers noted. “Whereas more electronic communication among team members leads to greater clinician and staff dissatisfaction, as well as poorer clinical outcomes and increased healthcare use among patients with coronary artery disease.”

EHR Cost/Benefits Generate Debate

This latest study is not the first to suggest that EHRs are creating problems for clinicians. While there appear to be no trends between studies, multiple researchers have highlighted the workload created by EHR systems in recent years.

In a study published in the Annals of Internal Medicine (AIM), Christine A. Sinsky, MD, of the American Medical Association, et al, analyzed data from the observation of 57 US-based physicians in family medicine, internal medicine, cardiology, and orthopedics.

Comparing data across 430 hours of observation, researchers concluded, “For every hour physicians provide direct clinical face time to patients, nearly two additional hours are spent on EHR and desk work within the clinic day. Outside office hours, physicians spend another one to two hours of personal time each night doing additional computer and other clerical work.”

However, in a 2015 study published in the Annals of Family Medicine (AFM), Valerie Gilchrist, MD, Chair of the Department of Family Medicine and Family Health at the School of Medicine and Public Health, University of Wisconsin, et al, found lower numbers. Observing 27 community-based family physicians across a single practice day, the researchers found that 39% of the practice day on average was devoted to office-based time. Of that time, 61% was spent on medical care related tasks.

Building a Better EHR

While medical laboratories and diagnostic specialists—such as anatomic pathologists—can work with physicians to streamline ordering and reporting processes relating to EHRs, much of the burden comes from how EHR systems are designed and used.

In a 2016 New England Journal of Medicine Catalyst Panel on EHRsTait Shanafelt, MD, Director of the Mayo Clinic Department Program on Physician Wellness, noted that one of the most contested features of EHR systems in the US, according to the AMA and Mayo Clinic, is computerized physician order entry (CPOE).

Later in the discussion, Sinsky discussed a recent trip to the UK, where she observed general practitioners (GPs) at the National Health Service (NHS). She noted that most GPs loved their EHRs. However, those EHRs were designed with GP input to best work with an NHS GP’s typical workflows and procedures. She also noted that overall usage is different in the UK, as EHRs there are not tied into billing systems.

As Dark Daily has reported, up to 70% of data stored in a patient’s electronic health record is clinical pathology laboratory related. As newer EHRs replace outdated models, it will remain critical for healthcare professionals—including clinical laboratory professionals who generate most of the data stored in EHRs—to assess, track, and report on what is working with various platforms and what is not.

Communicating this end-user data to EHR developers is essential to designing EHRs that reduce unneeded burden and clerical load on physicians, rather than increasing it.

Clinical laboratories tat wish to take proactive steps might contact physicians and other professionals in their workgroups to tailor data generation, reporting, and ordering processes to the EHRs in use at those practices.

—Jon Stone

Related Information:

Primary Care Doctors Spend More Than 50% of Workday on EHR Tasks, American Medical Association Study Finds

Tethered to the EHR: Primary Care Physician Workload Assessment Using EHR Event Log Data and Time-motion Observations

Study: EHRs Bloat Clerical Workload for Docs

Harried Doctors Hail the Rise of the Medical Scribe

Type and Click Tasks Drain Half the Primary Care Workday

Allocation of Physician Time in Ambulatory Practice: A Time and Motion Study in 4 Specialties

Doctors Wasting Over Two-Thirds of Their Time Doing Paperwork

Physician Activities During Time Out of the Examination Room

Heavy Burden of EHRs Could Contribute to Physician Burnout

3D-Printed Robot May Change Breast Biopsies Surgery and Boost Accuracy of Anatomic Pathology Cancer Diagnoses

‘Stormram 4’ fits inside MRI bore and enables ‘nearly real-time imaging guidance’ to achieve sub-millimeter precision in reaching targets

Cancer surgeons perform an estimated 1.7 breast biopsies each year, according to the American Association of Preferred Provider Organizations. This makes the procedure a significant proportion of cases referred to anatomic pathologists. This surgery, however, is time-consuming and not always accurate due to shortcomings in existing surgical technology and to human error.

Now, a 3D-printed MRI-guided robotic biopsy system under development by researchers in the Netherlands may change how biopsies are performed and lead to more accurate biopsies and breast cancer diagnoses. Successful conclusion to this research could impact surgical pathology and medical laboratories worldwide.

“The Stormram 4 is a stimulus for the entire diagnostic phase of breast cancer,” the University of Twente (UT) stated in a press release. “Medical robotics is sure to become standard procedure in hospitals in the near future.”

The robotic system, dubbed Stormram 4, would be used to remove biological specimens during an MRI scan, not unlike today’s current biopsy procedures. However, the robotic system allows for sub-millimeter precision control of a single, thin biopsy needle.

The Stormram 4 (above) breast biopsy robot, developed by researchers at the University of Twente in The Netherlands, is constructed of 3D-printed plastic that is driven by rectilinear and curved air-pressure motors. This allows it to fit inside an MRI scanner’s narrow tunnel and operate while an MRI scan is taking place. Early research indicates that this device might make it possible to more precisely biopsy breast cancer tissue during surgery, thus improving the quality of the biopsies referred to anatomic pathologists. Click on the photo above to see a video of the robot in action. (Photo copyright: University of Twente.)

The robot was developed by:

Billed as the world’s smallest 3D-printed biopsy robot, Stormram 4 offers major advantages over conventional MRI-navigated biopsy techniques, according to Groenhuis. The robot offers sub-millimeter precision, which was achieved during tests conducted on models of breasts.

“The manual MRI-guided breast biopsy procedure is time-consuming and ineffective,” Groenhuis told Digital Trends. “It uses a thick needle, extracting large tissue samples, often in multiple attempts, to extract a representative biopsy sample.”

In contrast, he explained, “The robotic system can manipulate the needle more precisely toward target coordinates of the lesion inside the body, on the first attempt. This will improve the accuracy of the biopsy procedure compared to the current manual practice. Secondly, the needle insertion can be performed inside the MRI scanner itself, so that the needle can be followed under nearly real-time imaging guidance. The required time to perform the biopsy is also shorter, allowing more effective use of the MRI scanner facilities.”

Building a Robot Compatible with MRI Environment

Creating a robotic system that would be compatible with an MRI machine was the first hurdle researchers had to overcome. It meant metallic materials could not be used within the magnetic chamber of the MRI scanner. Researchers turned to 3D printing to create the Stormram 4 entirely from plastic. And they powered the system using “rectilinear and curved air pressure motors.”

“Current robotic systems cannot be used inside the MRI due to the high magnetic field,” Groenhuis explained in the Digital Trends article, “and therefore we initiated the development of an MRI-compatible robotic system for breast biopsy.”

It took several attempts to build a version of Stormram that would fit inside an MRI bore. The fourth iteration succeeded. Operators control the robot using five-meter-long air pipes operated from outside of the scanner to prevent the metal air valves used to drive the robot from interfering with the scan.

Though the device is in its final stage of development, Groenhuis told Digital Trends the Stormram 4 will need several years of additional development and trials to receive regulatory approval.

Robotics Expected to Improve Surgical Outcomes

Stormram 4 recently won a prestigious award in the 2017 Surgical Robotic Challenge at the international Hamlyn Symposium in London, the university noted in its press release. But the Stormram 4 is not the only surgical robot making headlines. MRI-compatible surgical robots offer the promise of becoming revolutionary tools as researchers develop machines to improve a range of surgical outcomes.

For example, at the Automation and Interventional Medicine (AIM) Robotics Research Laboratory at Worcester Polytechnic Institute (WPI) in Massachusetts, other MRI-guided medical robots are under development. These robots are designed to automate lead placement for deep brain stimulation during stereotactic neurosurgery for Parkinson’s Disease, and brachytherapy seed implantation for prostate cancer therapy, the WPI website notes.

These and other technology breakthroughs are changing the practice of surgical pathology. Consequently, clinical laboratories and In Vitro diagnostics (IVD) developers should expect be impacted as well.

—Andrea Downing Peck

 

Related Information:

About Breast Biopsy

UT Enters Battle Against Cancer with 3D-Printed Robot

3D-Printed Robot Designed to Take Biopsies in an MRI Scanner

Human Antibodies in Medical Laboratory May Be Key to Immunity and Preventing Diseases Such as Influenza A

Scientists with Francis Crick Institute and Ragon Institute have successfully created human antibodies in vitro that can be made to recognize specific antigens in the human body; Could lead to new treatments for cancer and other infectious diseases

It’s been long-recognized that the ability to design human antibodies customized to recognize specific antigens could be a game-changer in the diagnosis and treatment of many diseases. It would enable the creation of useful new clinical laboratory tests, vaccines, and similar therapeutic modalities.

Now an international research team has published the findings of its novel technique that was developed to generate human antibodies in vitro. The research was conducted at the Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), Harvard, and the Francis Crick Institute in London.

Antibodies and antigens are used in a large number of clinical laboratory and anatomic pathology tests and assays. In many cases, animal antibodies/antigens are used in test kits because they attract and bind to specific human antibodies/antigens that are biomarkers for diagnoses. Thus, as this technology is validated and further developed, it could be the source of useful biomarkers for lab tests as well as for vaccines.

Antibodies—also referred to as immunoglobulins—are made by the body’s B-lymphocytes (B cells) in response to antigens, such as bacteria, viruses, or other harmful substances. Each antibody has a special bearing on a particular antigen. For example, the human immunodeficiency virus (HIV) antibody and HIV antigen (p24) test screens and diagnoses people for HIV infection, explained LabTestsOnline.

Many medical laboratory tests use animal antibodies and antigens. But what if human antibodies could be generated and stimulated to recognize specific human antigens? That’s what the researchers believe they have done, according to a press release.

The Ragon Institute at MGH, MIT, and Harvard (above) was established in 2009 to find an HIV vaccine and to be a worldwide leader in the study of immunology. The Francis Crick Institute, formed in 2015, is a biomedical research institute using biology to understand health and disease. (Photo copyright: The Ragon Institute.)

The researchers know the novel technique they developed for generating human antibodies in vitro needs further development and validation. If this happens, the technique could one day be the source of useful biomarkers for medical lab tests, and may be a way to prevent infectious diseases.

“Specifically, it should allow the production of these antibodies within a shorter time frame in vitro and without the need for vaccination or blood/serum donation from recently infected or vaccinated individuals,” said Facundo D. Batista, PhD, in the press release. Batista is Principle Investigator with the Ragon Institute and led the research teams. “In addition, our method offers the potential to accelerate the development of new vaccines by allowing the efficient evaluation of candidate target antigens.”

Researchers Aim to Make Human Antibodies in Medical Laboratory

This international team of researchers sought to replicate in the lab—using patient blood samples—a natural human process for creation of antibodies from B cells. This is the process they wished to replicate:

·       Antibodies are made by the body’s B cells;

·       An antigen molecule is recognized by a B cell;

·       Plasma cells (able to secrete antibodies) develop;

·       An antibody binds to a particular antigen to fight an infection.

“B lymphocytes (B cells) play a critical role in adaptive immunity, providing protection from pathogens through the production of specific antibodies. B cells recognize and respond to pathogen-derived antigens through surface B cell receptors,” the researchers wrote in The Journal of Experimental Medicine (JEM).

Nanoparticles Key to the Approach

But finding an exact antigen is only one part of the B cell’s job. In the lab, B cells also need a trigger that enables them to grow and develop into plasma cells, which are key to fighting disease, the researchers noted.

“The in vitro activation of B cells in an antigen-dependent manner is difficult to achieve,” the authors stated in the JEM. “To overcome limitations, we developed a novel in vitro strategy to stimulate human B cells with streptavidin nanoparticles conjugated to both CpG and antigen. B cells producing antigen-specific antibodies were identified, quantified, and characterized to determine the antibody repertoire.”

According to the press release, “CpG oligonucleotides internalize into B cells that recognize the specific antigen.”

The statement, which garnered worldwide attention, noted the following steps taken by the researchers:

·       B cells from patient blood samples were isolated;

·       Then, they were treated with tiny nanoparticles coated with both CpG oligonucleotides and the right antigen;

·       These DNA molecules are unique, because they can activate toll-like receptor 9 (TLR9);

·       TLR9 develops into antibody-secreting plasma cells.

Results: Antibodies for Tetanus, Influenza, HIV

This method, according to the scientists, could be used in further research to develop antibodies to treat infectious diseases and cancer.

According to The Times of India,

·       “The team successfully demonstrated their approach using various bacterial and viral antigens, including the tetanus toxoid and proteins from several strains of influenza A;

·       “In each case, the researchers were able to produce specific, high-affinity antibodies in just a few days. Some of the anti-influenza antibodies generated by the technique recognized multiple strains of the virus and were able to neutralize its ability to infect cells;

·       “The procedure does not depend on the donors having been previously exposed to any of these antigens through vaccination or infection; and,

·       “Researchers were able to generate anti-HIV antibodies from B cells isolated from HIV-free patients.”

Research Suggests More Possibilities

While this highly scientific study may not be on the radar of most anatomic pathologists and medical laboratory leaders at the moment, it holds enormous promise to produce cures for infectious disease and more effective cancer treatments. This research project also demonstrates how new techniques using antibodies have the potential to create an entirely new generation of clinical laboratory assays that improve diagnostic accuracy and better inform physicians when they consider the most appropriate therapies for their patients.

—Donna Marie Pocius

Related Information:

Researchers Develop New Method to Generate Human Antibodies

Novel In Vitro Booster Vaccination to Rapidly Generate Antigen-Specific Human Monoclonal Antibodies

Human Antibodies Produced in Lab for First Time

China Struggling to Keep Up with Demand for Anatomic Pathologists

As the still-developing pathology profession in China struggles to meet demand, 3rd-party medical laboratory groups, and university/industry arrangements, find opportunities to fill the needs of China’s hospitals

China is currently facing a severe shortage of anatomic pathologists, which blocks patients’ access to quality care. The relatively small number of pathologists are often overworked, even as more patients want access to specialty care for illnesses. Some hospitals in China do not even have pathologists on staff. Thus, they rely on understaffed anatomic pathology departments at other facilities, or they use imaging only for diagnoses.

To serve a population of 1.4 billion people, China has only 29,000 hospitals with seven million beds. Among the healthcare providers, there just 20,000 licensed pathologists, according to the Chinese Pathologist Association. By contrast, recent statistics show that the United States has a population of 326 million people with approximately 18,000 actively practicing pathologists and 5,815 registered hospitals with 898,000 beds.

The largest pathology department in China is at Fudan University Shanghai Cancer Center (FUSCC), a hospital with 1,259 beds in operation and 50 pathologists on staff. News accounts say those pathologists are expected to process 40,000 cases this year, surpassing their 2016 workload by 5,000 cases. The FUSCC pathologists are supported by a small number of supplemental personnel, which include assistants, technicians, and visiting clinicians.

Qifeng Wang, a pathologist at FUSCC, indicated that most leading hospitals in China with average or above-average pathology staffing are experiencing similar barriers as FUSCC. Large hospitals, such as:

·       Cancer Hospital at the Chinese Academy of Medical Sciences;

·       Beijing Cancer Hospital;

·       Peking Union Medical College Hospital;

·       West China Hospital; and

·       First Affiliated Hospital of Sun Yat-sen University also deal with similar staffing shortages and excessive workloads for their pathology departments.

“The diagnostic skill level at FUSCC is not that different from that in the U.S.,” Wang told Global HealthCare Insights (GHI). He added, however, that the competent skill level of their staffers is not sufficient to handle the internal workload at FUSCC plus the additional workload referred to them from other facilities.

Though not at the top of the list, as the graphic above illustrates, China is preceded only by Uganda, Sudan, and Malaysia for the number of patients per anatomic pathologist. China has approximately one pathologist per 74,000 people. By contrast, the United States has one pathologist for every 19,000 people. Studies indicate that, globally, the number of pathologists each year is shrinking. (Image copyright: Clinical Laboratory Products)

Patients Forced to Migrate to Receive Diagnoses

Because there are so few pathologists in the vast, heavily-populated country, many Chinese patients travel to major cities to increase their chances of obtaining reliable diagnosis and care, which further overwhelms the system.

The 1,530-bed Yunnan Cancer Hospital in the western city of Kunming handles more than 4,000 cases forwarded to them from other institutions annually. The 14 pathologists at the center also sometimes travel to rural communities to provide anatomic pathology services.

“It’s the complex cases that make it hard to keep up with our workload” said Yonglin Wang, an anatomic pathologist at the Yunnan Cancer Hospital, in the GHI article. The pathologists at Yunnan often refer their more demanding cases to larger hospitals to ensure the best analysis and outcomes for the patients.

Workload, Low Pay, and Lawsuits Discourage Pathology Enrollments

A logical solution to the critical shortage of pathologists in China would be to increase the number of people choosing the profession. However, medical students in the country tend to steer clear of surgical pathology due to the excessive workload, lower pay and status, and the threat of lawsuits relating to improper diagnoses.

To address the demand, a private pathology industry is emerging in China. There are currently more than 300 private medical laboratories located throughout the country. The largest of these businesses is KingMed Diagnostics in Guangzhou. According to their website, the 3rd-party medical laboratory group focuses on medical testing, clinical trials, food and hygiene testing, and scientific research. They examine more than 4,000 pathology cases annually, concentrating on:

·       Immunohistochemistry;

·       Specialized staining; and,

·       Ultrastructural and molecular pathological diagnosis.

American Colleges Partnering with Chinese Laboratory Groups

Organizations from other countries, including the United States, also are entering the pathology industry in China.

In 2014, the UCLA Department of Pathology and Laboratory Medicine partnered with Chinese firm Centre Testing International Corporation (CTI) to operate a clinical laboratory in Shanghai. In the endeavor, pathologists from UCLA trained Chinese lab specialists on the proper interpretation of tests at the 25,000 square-foot facility. (See The Dark Report, “UCLA, Centre to Open Lab In China to Offer High Quality Testing,” May 19, 2014.)

“Because pathology has a history of being undervalued in China, the country has a shortage of pathologists trained to diagnose and interpret complex test results in specialized fields of medicine,” said Scott Binder, MD, Senior Vice Chair at UCLA Health in a statement. “Our partnership gives CTI and UCLA the opportunity to save lives by changing that.”

“Our collaboration will offer the people of China oncology, pathology, and laboratory medicine services they can trust. Many of these services are not largely available in China and are needed by physicians and healthcare providers to accurately diagnose and treat their patients,” stated Dr. Sangem Hsu, President of CTI in the UCLA statement.

As the need for pathologists increases worldwide, many countries will struggle to fulfill the demand. This may create even more opportunities for enterprising medical laboratory organizations and anatomic pathology groups who have the wherewithal and determination to make a difference overseas.

—JP Schlingman

Related Information:

China Grapples with a Pathologist Shortage

In China, More Irate Patients Violently Attack Doctors over Wrong Diagnoses and Poor Healthcare

UCLA Launches Joint Venture with Chinese Firm to Open Sophisticated Lab in Shanghai

The Pathologist Workforce in the United States

UCLA, Centre to Open Lab In China to Offer High Quality Testing

Digital Pathology Gives Rise to Computational Pathology

Pathologist Workforce in the United States: I. Development of a Predictive Model to Examine Factors Influencing Supply

Anatomic Pathology in China Is a Booming Growth Industry

Digital Pathology Enables UCLA-China Lab Connection

Lab Testing, Pathology is Fast-growing in China

 

Health Systems Putting Imaging Services, Such As MRIs, In Strip Malls and Shopping Centers To Help Patients with Cost and Convenience

Recognizing the need to serve patients with high-deductible health plans, hospital systems are opening healthcare centers in outpatient settings where patients can receive care and undergo procedures—including clinical laboratory tests—more conveniently and for less cost

Health systems are putting medical imaging services, such as MRIs, in strip malls and shopping centers as a way to make it easier for patients. Such locations can also offer lower-cost procedures because of lower overhead compared to imaging centers located in hospitals. This trend to offer patients more convenient service at a lower cost is something that clinical laboratory managers and pathologists should watch and understand.

One driver behind this trend is the growing number of Americans enrolled in High Deductible Health Plans (HDHPs), where deductibles can exceed $6,000 for individuals and $12,000 for families. With such high deductibles, patients are now keenly focused on the cost of their healthcare. Medical laboratories and anatomic pathology groups have been impacted by this trend, as more patients shell out cash to pay for walk-in procedures and providers must collect full payments for services rendered.

Hospitals and health systems recognize the increased demand for outpatient, lower-priced medical services, along with price transparency. Patients with HDHPs are one reason why hospital bad debt is growing.

Healthcare Shopping Drives Lower Costs and Convenience

Price shopping on the Internet for medical services also is becoming more popular due to the availability of online doctor and facility ratings and easily-accessible price comparisons.

There are more than 7,000 stand-alone imaging centers in the US that operate independently of hospitals. About 70% of diagnostic imaging services occur in hospital settings with the other 30% performed in outpatient facilities.

According to Amino, a healthcare transparency company based in San Francisco, the cost for an MRI can vary significantly depending on where a patient lives and what type of facility is utilized for the test. Their research found that the cost of a limb MRI can range from hundreds of dollars at a freestanding facility to as much as $4,000 at a hospital. In some states, the price difference between getting an MRI at a hospital versus a stand-alone facility was almost $2,000. The average cost of having an MRI performed in a hospital setting is $2600.

Based on data from Amino, the graphic above illustrates the wide range of prices for MRIs throughout the country, and the cost disparity between hospital and free-standing medical imaging centers. In the future, pathologists and clinical laboratory managers can expect to see the publication of similar graphs that show the variation in the cost of clinical laboratory tests and anatomic pathology procedures, not just by state, but by individual laboratories. (Graphic copyright: MBO.)

Smart Choice MRI, based in Mequon, Wis., charges a maximum price of $600 for an MRI. The company now has 17 locations in Illinois, Minnesota, and Wisconsin, but plans to have 90 facilities within the next three years.

“The rise of high deductible health plans has fueled consumers who understand their options and demand a higher level of service from their providers,” Rick Anderson, Chief Executive Officer of Smart Choice MRI told the StarTribune. “Quality, service-focused care at a fair, transparent price has never been more important.”

Anderson added that his company can handle 94% of MRI procedures in their convenient, freestanding imaging facilities.

“I think the quality is very good, but we’ve combined the cost and quality, and most importantly the convenience of being in the neighborhood where people are shopping,” Anderson said. “If you look at our Richfield (Minnesota) location, we’re literally next to SuperTarget, Caribou Coffee, Noodles and Company, and Qdoba.”

Public and Private Health Insurers Shift Payments to Free-standing Facilities

Anthem recently announced they will no longer pay for outpatient MRIs and CT scans performed at hospitals in almost all of the states where the health insurer does business. They are requiring patients to have the tests performed in free-standing imaging facilities in an effort to cut costs and lower premiums. This change could affect 4.5 million people in 13 of the 14 states Anthem serves, with New Hampshire being the exception.

Diagnostic imaging is not the only medical service transitioning to outpatient facilities.

In July, the Centers for Medicare and Medicaid Services (CMS) announced that it is considering payment approval for total hip and knee replacements performed in outpatient settings. This change could go into effect as early as next year.

According to Steve Miller, Chief Operating Officer at Ambulatory Surgery Center Association, an estimated 25-50% of joint replacements could be performed on an outpatient basis.

“There’s more and more comfort among surgeons who are coming out of residencies where they trained to do surgeries on an outpatient basis,” Miller told Modern Healthcare. “The volumes are doubling year over year.”

Surgeons Approve of Free-standing Surgery Centers

There are currently more than 5,500 ambulatory surgery centers in the country and upwards of 200 of those facilities are performing outpatient joint replacement procedures. Three years ago, there were only around 25 facilities providing these services.

In 2015, there were more than 658,000 total hip and knee replacements performed on Medicare beneficiaries, according to CMS data. In 2014, the government paid more than $7 billion for the hospitalization costs of these two procedures. The CMS estimates that the cost for uncomplicated knee replacement surgeries in 2018 will be $12,381 for an inpatient procedure and $9,913 for the outpatient rate.

Physicians feel that performing joint replacements in outpatient facilities could reduce costs by up to 50%.

“I could do maybe 20% of my Medicare patients on an outpatient basis, as long as they have the support and structure at home to help them recover,” said Matthew Weresh, MD, a physician at Des Moines Orthopedic Surgeons (DMOS) in the Modern Healthcare article. “It’s a great move by Medicare.” DMOS plans to begin performing joint replacements at an ambulatory surgery center later this year.

Pathologists would be wise to monitor this trend and anticipate how anatomic pathology services might shift towards lower-cost settings. For clinical laboratories, this trend further illustrates the need to prepare for more consumers paying cash for their medical services and seeking cost-effective, high-quality options.

—JP Schlingman

Related Information:

Coming Soon to a Strip Mall Near You: An MRI Provider

MRI Competition Heats up in Twin Cities

Anthem’s New Outpatient Imaging Policy Likely to Hit Hospitals’ Bottom Line

Free Standing Imaging Center and Hospitals

Need an MRI? It Pays to Shop Around. Big Time.

Hospitals Leery of CMS Proposal to Pay for Joint Replacements in ASCs

;