Researchers surprised that process designed to detect SARS-CoV-2 also identifies monkeypox in wastewater

Early information about an outbreak in a geographical region can inform local clinical laboratories as to which infectious agents and variants they are likely to see when testing patients who have symptoms. To that end, wastewater testing has become a rich source of early clues as to where COVID-19 outbreaks are spreading and how new variants of the coronavirus are emerging.

Now, scientists in San Diego County are adding monkeypox to its wastewater surveillance, according to an August University of California San Diego (UCSD) Health press release. The team at UCSD uses the same process for detecting SARS-CoV-2.

Ongoing advances in genetic sequencing and digital technologies are making it feasible to test wastewater for infectious agents in ways that were once too time-consuming, too expensive, or simply impossible.

Rob Knight, PhD

“Before wastewater sequencing, the only way to do this was through clinical testing, which is not feasible at large scale, especially in areas with limited resources, public participation, or the capacity to do sufficient testing and sequencing,” said Knight in a UCSD press release. “We’ve shown that wastewater sequencing can successfully track regional infection dynamics with fewer limitations and biases than clinical testing to the benefit of almost any community.” (Photo copyright: UC San Diego News.)

Same Process, Different Virus

Following August’s declaration of a state of emergency by California, San Diego County, and the federal government, UCSD researchers added monkeypox surveillance to UCSD’s existing wastewater surveillance program.

“It’s the same process as SARS-CoV-2 qPCR monitoring, except that we have been testing for a different virus. Monkeypox is a DNA virus, so it is a bit of a surprise that our process optimized for SARS-CoV-2, which is an RNA virus, works so well,” said Rob Knight, PhD, Professor of Pediatrics and Computer Science and Engineering at UCSD and one of the lead authors of the study in the press release.

Knight is also the founding director of the Center for Microbiome Innovation at UCSD.

According to the press release, RNA sequencing from wastewater has two specific benefits:

  • It avoids the potential of clinical testing biases, and
  • It can track changes in the prevalence of SARS-CoV-2 variants over time.

In 2020, at the height of the COVID-19 pandemic, scientists from the University of California San Diego and Scripps Research looked into genetic sequencing of wastewater. They wanted to see if it would provide insights into levels and variants of the SARS-CoV-2 within a specific community.

Individuals who have COVID-19 shed the virus in their stool.

The UCSD/Scripps researchers deployed commercial auto-sampling robots to collect wastewater samples at the main UCSD campus. They analyzed the samples for levels of SARS-CoV-2 RNA at the Expedited COVID-19 Identification Environment (EXCITE) lab at UCSD. After the success of the program on the campus, they extended their research to include other facilities and communities in the San Diego area.

“The coronavirus will continue to spread and evolve, which makes it imperative for public health that we detect new variants early enough to mitigate consequences,” said Knight in a July press release announcing the publication of their study in the journal Nature, titled, “Wastewater Sequencing Reveals Early Cryptic SARS-CoV-2 Variant Transmission.”

Detecting Pathogens Weeks Earlier than Traditional Clinical Laboratory Testing

In July, the scientists successfully determined the genetic mixture of SARS-CoV-2 variants present in wastewater samples by examining just two teaspoons of raw sewage. They found they could accurately identify new variants 14 days before traditional clinical laboratory testing. They detected the presence of the Omicron variant 11 days before it was first reported clinically in the community.

During the study, the team collected and analyzed 21,383 sewage samples, with most of those samples (19,944) being taken from the UCSD campus. They performed genomic sequencing on 600 of the samples and compared them to genomes obtained from clinical swabs. They also compared 31,149 genomes from clinical genomic surveillance to 837 wastewater samples taken from the community.

The scientists distinguished specific viral lineages present in the samples by sequencing the viruses’ complete set of genetic instructions. Mutational differences between the various SARS-CoV-2 variants can be minute and subtle, but also have notable biological deviations.

“Nothing like this had been done before. Sampling and detection efforts began modestly but grew steadily with increased research capacity and experience. Currently, we’re monitoring almost 350 buildings on campus,” said UCSD’s Chancellor Pradeep Khosla, PhD, in the July press release.

“The wastewater program was an essential element of UC San Diego Health’s response to the COVID pandemic,” said Robert Schooley, MD, Infectious Disease Specialist at UC San Diego Health, in the press release. Schooley is also a professor at UCSD School of Medicine, and one of the authors of the study.

“It provided us with real-time intelligence about locations on campus where virus activity was ongoing,” he added. “Wastewater sampling essentially allowed us to ‘swab the noses’ of every person upstream from the collector every day and to use that information to concentrate viral detection efforts at the individual level.”

Monkeypox Added to UCSD Wastewater Surveillance

In August, UCSD officially added the surveillance of the monkeypox virus to their ongoing wastewater surveillance program. A month earlier, the researchers had discerned 10,565.54 viral copies per liter of wastewater. They observed the levels fluctuating and increasing.

On August 2, the scientists detected 189,309.81 viral copies per liter of wastewater. However, it is not yet clear if the monitoring of monkeypox viral loads in wastewater will enable the researchers to accurately predict future infections or case rates.

“We don’t yet know if the data will anticipate case surges like with COVID,” Knight said in the August UCSD press release announcing the addition of monkeypox to the surveillance program. “It depends on when the virus is shed from the body relative to how bad the symptoms are that cause people to seek care. This is, in principle, different for each virus, although in practice wastewater seems to be predictive for multiple viruses.”

Utilization of genetic sequencing of wastewater sampling will continue to develop and improve. “It’s fairly easy to add new pathogens to the process,” said Smruthi Karthikeyan, PhD, an environmental engineer and postdoctoral researcher in Knight’s lab who has overseen wastewater monitoring at UC San Diego. “It’s doable on short notice. We can get more information in the same turnaround time.”

Thus, clinical laboratories engaged in testing programs for COVID-19 may soon see the addition of monkeypox to those processes.

-JP Schlingman

UC San Diego Researchers Add Monkeypox to Wastewater Surveillance

Wastewater Sequencing Reveals Early Cryptic SARS-CoV-2 Variant Transmission

Awash in Potential: Wastewater Provides Early Detection of SARS-CoV-2 Virus

National Wastewater Surveillance System (NWSS)

CDC National Wastewater Surveillance System Locates and Tracks SARS-CoV-2 Coronavirus in the Public’s Wastewater

CDC, HHS Create National Wastewater Surveillance System to Help Monitor and Track Spread of COVID-19