News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Executive War College Headliners Connect Genetic Testing, Wearable Technology, Precision Medicine, and Struggle Over Claim Reimbursement between Clinical Labs and Payers

Keynote speakers advise clinical laboratory leaders to leverage diagnostic data that feeds precision therapies

At this week’s Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management in New Orleans, keynote presenters dissected ways that clinical laboratory leaders and anatomic pathologists can contribute to innovative treatment approaches, including wearable technology and precision medicine.

The speakers also noted that labs must learn to work collaboratively with payers—perhaps through health information technology (HIT)—to establish best practices that improve reimbursements on claims for novel genetic tests.

Harnessing the ever-increasing volume of diagnostic data that genetic testing produces should be a high priority for labs, said William Morice II, MD, PhD, CEO and President of Mayo Clinic Laboratories.

“There will be an increased focus on getting information within the laboratory … for areas such as genomics and proteomics,” Morice told the keynote audience at the Executive War College on Wednesday.

William Morice II, MD, PhD

“Wearable technology data is analyzed using machine learning. Clinical laboratories must participate in analyzing that spectrum of diagnostics,” said William Morice II, MD, PhD (above), CEO and President of Mayo Clinic Laboratories. Morice spoke during this week’s Executive War College.

Precision Medicine Efforts Include Genetic Testing and Wearable Devices

For laboratories new to genetic testing that want to move it in-house, Morice outlined effective first steps to take, including the following:

  • Determine and then analyze the volume of genetic testing that a lab is sending out.
  • Research and evaluate genetic sequencing platforms that are on the market, with an eye towards affordable cloud-based options.
  • Build a business case to conduct genetic tests in-house that focuses on the long-term value to patients and how that could also improve revenue.

Morice suggested that neuroimmunology is a reasonable place to start with genetic testing. Mayo Clinic Laboratories found early success with tests in this area because autoimmune disorders are rising among patients.

A related area for clinical laboratories and pathology practices to explore is their role in how clinicians treat patients using wearable technology.

For example, according to Morice, Mayo Clinic has monitored 20,000 cardiac patients with wearable devices. The data from the wearable devices—which includes diagnostic information—is analyzed using machine learning, a subset of artificial intelligence.

In one study published in Scientific Reports, scientists from Mayo’s Departments of Neurology and Biomedical Engineering found “clear evidence that direct seizure forecasts are possible using wearable devices in the ambulatory setting for many patients with epilepsy.”

Clinical laboratories fit into this picture, Morice explained. For example, depending on what data it provides, a wearable device on a patient with worsening neurological symptoms could trigger a lab test for Alzheimer’s disease or other neurological disorders.

“This will change how labs think about access to care,” he noted.

For Payers, Navigating Genetic Testing Claims is Difficult

While there is promise in genetic testing and precision medicine, from an administrative viewpoint, these activities can be challenging for payers when it comes to verifying reimbursement claims.

“One of the biggest challenges we face is determining what test is being ordered. From the perspective of the reimbursement process, it’s not always clear,” said Cristi Radford, MS, CGC, Product Director at healthcare services provider Optum, a subsidiary of UnitedHealth Group, located in Eden Prairie, Minnesota. Radford also presented a keynote at this year’s Executive War College.

Approximately 400 Current Procedural Terminology (CPT) codes are in place to represent the estimated 175,000 genetic tests on the market, Radford noted. That creates a dilemma for labs and payers in assigning codes to novel genetic tests.

During her keynote address, Radford showed the audience of laboratory executives a slide that charted how four labs submitted claims for the same high-risk breast cancer panel. CPT code choices varied greatly.

“Does the payer have any idea which test was ordered? No,” she said. “It was a genetic panel, but the information doesn’t give us the specificity payers need.”

In such situations, payers resort to prior authorization to halt these types of claims on the front end so that more diagnostic information can be provided.

“Plans don’t like prior authorization, but it’s a necessary evil,” said Jason Bush, PhD, Executive Vice President of Product at Avalon Healthcare Solutions in Tampa, Florida. Bush co-presented with Radford.

[Editor’s note: Dark Daily offers a free webinar, “Learning from Payer Behavior to Increase Appeal Success,” that teaches labs how to better understand payer behavior. The webinar features recent trends in denials and appeals by payers that will help diagnostic organizations maximize their appeal success. Click here to stream this important webinar.]

Payers Struggle with ‘Explosion’ of Genetic Tests

In “UnitedHealth’s Optum to Offer Lab Test Management,” Dark Daily’s sister publication The Dark Report, covered Optum’s announcement that it had launched “a comprehensive laboratory benefit management solution designed to help health plans reduce unnecessary lab testing and ensure their members receive appropriate, high-quality tests.”

Optum sells this laboratory benefit management program to other health plans and self-insured employers. Genetic test management capabilities are part of that offering.

As part of its lab management benefit program, Optum is collaborating with Avalon on a new platform for genetic testing that will launch soon and focus on identifying test quality, streamlining prior authorization, and providing test payment accuracy in advance.

“Payers are struggling with the explosion in genetic testing,” Bush told Executive War College attendees. “They are truly not trying to hinder innovation.”

For clinical laboratory leaders reading this ebriefing, the takeaway is twofold: Genetic testing and resulting precision medicine efforts provide hope in more effectively treating patients. At the same time, the genetic test juggernaut has grown so large so quickly payers are finding it difficult to manage. Thus, it has become a source of continuous challenge for labs seeking reimbursements.

Heath information technology may help ease the situation. But, ultimately, stronger communication between labs and payers—including acknowledgement of what each side needs from a business perspective—is paramount. 

Scott Wallask

Related Information:

Executive War College Keynote Speakers Highlight How Clinical Laboratories Can Capitalize on Multiple Growth Opportunities

What Key Laboratory Leaders Will Learn at This Week’s 2023 Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management

Ambulatory Seizure Forecasting with a Wrist-Worn Device Using Long-Short Term Memory Deep Learning

UnitedHealth’s Optum to Offer Lab Test Management

Learning from Payer Behavior to Increase Appeal Success

Tufts University School of Engineering Researchers Have Developed Tooth-mounted Sensors That Monitor Glucose, Salt, and Alcohol in Foods as They Enter the Body

Tuft’s proof-of-concept demonstration study shows how changes in saliva can be employed as biomarkers for development of future diagnostic monitoring devices and applications

For years, pathologists and dentists have recognized that the mouth contains many useful biomarkers for a wide range of health conditions and diseases. Now a study by a research team at Tufts University School of Engineering (Tufts) has demonstrated that a tooth-mounted sensor can reliably measure certain target markers.

In this proof-of-concept study, Tufts researchers developed a tooth-mounted sensor that monitors food consumption as it enters the body. This potentially adds behavioral data to the growing list of exploitable biomarkers available to developers of in vitro diagnostics (IVDs) and wearable medical monitoring devices. For that reason, many clinical laboratory managers and anatomic pathologists will want to track further development of this technology, which uses the mouth as the source of the markers to be measured.

A report detailing the device was first published in the scientific journal Advanced Materials in March of this year.

Sensor Reacts to Biomarkers in Saliva

The 2×2-millimeter flexible sensor consists of three layers and adheres to the tooth like a sticker. It has two gold outer rings surrounding an inner layer of bio-responsive material that is highly sensitive to glucose, salt, and alcohol. The presence of any of these substances alters the electrical properties of the sensor and incites it to transmit radio frequency waves that can be received by mobile devices.

Researchers conducting a proof-of-concept study at Tufts University School of Engineering have developed “a materials‐based strategy to add utility to traditional dielectric sensors by developing a conformal radiofrequency (RF) construct composed of an active layer encapsulated between two reverse‐facing split ring resonators,” their paper published in Advanced Materials notes. The sensor is shown above mounted to a tooth, where it reacts to the presence of certain biomarkers in the saliva, triggering the transmission of an RFID signal. This device has the potential to also measure the same biomarkers used in clinical laboratory tests. (Photo copyright: Smithsonian Magazine/Tufts University School of Engineering.)

There are many possible uses for this tooth-mounted sensor. Individuals with medical conditions such as diabetes, celiac disease, or hypertension, which require them to avoid certain substances in their diet, could benefit from utilizing a device that employs the technology under development at Tufts.

Such a gadget might also help those trying to lose weight. The creators hope to enhance the material, so it has the ability to discern additional nutrients and chemicals.

“If you can evolve the sensor and engineer it to have a database of food consumption, then you could think about nutrition management,” Fiorenzo Omenetto, PhD, Professor, Department of Biomedical Engineering at Tufts and one of the authors of the research told Smithsonian Magazine. “That could be reminding us that we’re indulging too much in sugar or something like that.”

It also could potentially detect physiological or chemical changes taking place in the body by detecting certain bio-markers in the saliva.

“In theory we can modify the bio-responsive layer in these sensors to target other chemicals. We’re really limited only by our creativity,” Omenetto noted in a news release. “We have extended common RFID [radio frequency identification] technology to a sensor package that can dynamically read and transmit information on its environment, whether it is affixed to a tooth, to skin, or any other surface.”

Other Food Intake Devices

There have been previous attempts to develop wearable devices that monitors food intake. However, those gadgets usually required the use of mouth guards and head gear, which are too cumbersome for continuous everyday use. The minute size of the Tufts tooth-mounted device renders it more practical for consumers. And, since it can be mounted anywhere on a tooth—front or back—it can be made undetectable while being worn.

“This study is an interesting proof-of-concept demonstration that small, wireless biosensors can detect changes in saliva due to the presence of compounds such as salt, sugar, and alcohol,” Ben Almquist, PhD, a lecturer in the Department of Bioengineering at Imperial College London, told Smithsonian Magazine.

“For instance, for continuous monitoring of food intake, the sensors will need to be robust enough to withstand abrasion during chewing,” Almquist noted. “In addition, foods are complex mixtures of compounds including salts, sugars and proteins, and the relative amounts of each that enter into saliva will depend on factors such as the nature of the food [i.e., cooked versus fresh], the amount of chewing, and the time in the mouth before swallowing.”

The device currently remains in the prototype stage and more testing will be needed to determine its efficacy and durability. However, the emergence of such wearable devices for medical use suggests valuable opportunities for clinical laboratories.

Because data captured from the tooth-mounted device is transmitted wirelessly, clinical laboratories could potentially store and monitor the data, compare the collected data to other medical laboratory test results for the same patient, then communicate that information to clinicians, other caregivers, and even the patients. This would be a new way for clinical laboratories to provide innovative, value-added services to healthcare professionals and consumers.

—JP Schlingman

Related Information:

This Tiny Tooth Sensor Could Keep Track of the Food You Eat

Scientists Develop Tiny Tooth-mounted Sensors That Can Track What You Eat

A New Tooth-mounted Sensor Will Soon Help You Lose Weight

Functional, RF‐Trilayer Sensors for Tooth‐Mounted, Wireless Monitoring of the Oral Cavity and Food Consumption

;