News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

PwC Predicts Forces Shaping Healthcare in 2018; Some Could Impact Clinical Laboratories and Anatomic Pathology Groups

PwC’s list of 12 factors that will shape the healthcare landscape in 2018 calls attention to many new innovations Dark Daily has reported on that will impact how medical laboratories perform their tests

PwC’s Health Research Institute (HRI) issued its annual report, detailing the 12 factors expected to impact the healthcare industry the most in 2018. Dark Daily culled items from the list that will most likely impact clinical laboratories and anatomic pathology groups. They include:

How clinical laboratory leaders respond to these items could, in part, be determined by new technologies.

AI Is Everywhere, Including in the Medical Laboratory

Artificial intelligence is becoming highly popular in the healthcare industry. According to an article in Healthcare IT News, business executives who were polled want to “automate tasks such as routine paperwork (82%), scheduling (79%), timesheet entry (78%), and accounting (69%) with AI tools.” However, only about 20% of the executives surveyed have the technology in place to use AI effectively. The majority—about 75%—plan to invest in AI over the next three years—whether they are ready or not.

One such example of how AI could impact clinical laboratories was demonstrated by a recent advancement in microscope imaging. Researchers at the University of Waterloo (UW) developed a new spectral light fusion microscope that captures images in full color and is far less expensive than microscopes currently on the market.

“In medicine, we know that pathology is the gold standard in helping to analyze and diagnose patients, but that standard is difficult to come by in areas that can’t afford it,” Alexander Wong, PhD, one of the UW researchers, told CLP.

“The newly developed microscope has no lens and uses artificial intelligence and mathematical models of light to develop 3D images at a large scale. To get the same effect using current technologies—using a machine that costs several hundred thousand dollars—a technician is required to ‘stitch together’ multiple images from traditional microscopes,” CLP noted.

Healthcare Intermediaries Could Become Involved with Clinical Laboratory Data

Pricing is one of the biggest concerns for patients and government entities. This is a particular concern for the pharmaceutical sector. PwC’s report notes that “stock values for five of the largest intermediaries in the pharmacy supply chain have slumped in the last two years as demands for lower costs and better outcomes have intensified.”

Thus, according to PwC, pressure may come to bear on intermediaries such as Pharmacy Benefit Managers (PBMs) and wholesalers, to “prove value and success in creating efficiencies or risk losing their place in the supply chain.”

Similar pressures to lower costs and improve efficiency are at work in the clinical laboratory industry as well. Dark Daily reported on one such cost-cutting measure that involves shifting healthcare payments toward digital assets using blockchains. The technology digitally links trusted payers and providers with patient data, including medical laboratory test results. (See, “Blockchain Technology Could Impact How Clinical Laboratories and Pathology Groups Exchange Lab Test Data,” September 29, 2017.)

PwC 2018 Annual Report

PwC’s latest report predicts 12 forces that will continue to impact healthcare, including clinical laboratories and anatomic pathology groups, in 2018. Click on the image of the cover above to access an online version of the report. (Photo copyright: PwC/Issuu.)

The Opioid Crisis Remains at the Forefront

Healthcare will continue to feel the impact of the opioid crisis, according to the PwC report. Medical laboratories will continue to be involved in the diagnosis and treatment of opioid addition, which has garnered the full attention of the federal government and has become a multi-million-dollar industry.

Security Remains a Concern

Cybersecurity will continue to impact every facet of healthcare in 2018. Healthcare IT News reported, “While 95% of provider executives believe their organization is protected against cybersecurity attacks, only 36% have access management policies and just 34% have a cybersecurity audit process.”

Patients are aware of the risks and are often skeptical of health information technology (HIT), Dark Daily reported in June of last year. Clinical laboratories must work together with providers and healthcare organizations to audit their security measures. Recognizing the importance of the topic, the National Independent Laboratory Association (NILA) has named cybersecurity for laboratory information systems (LIS) a focus area.

Patient Experience a Priority

Although there have been significant improvements in the area of administrative tasks, there is still an enormous demand for a better patient experience, including in clinical laboratories. Healthcare providers want patients to make changes for the better that ultimately improve outcomes and the patient experience is one path toward that goal.

“Provider reimbursements will be based in part on patient engagement efforts such as promoting self-management and coaching patients between visits,” PwC noted in its report, a fact that Dark Daily has continually reported on for years. (See, “Pathologists and Clinical Lab Executives Take Note: Medicare Has New Goals and Deadlines for Transitioning from Fee-For-Service Healthcare Models to Value-Based Reimbursement,” April 1, 2015.)

Demands for Price Transparency Increase

As they follow healthcare reform guidelines to increase quality while lowering costs, state governments will continue to ramp up pressure on healthcare providers and third parties in the area of pricing. Rather than simply requiring organizations to report on pricing, states are moving towards legislating price controls, as Dark Daily reported in February.

Social Factors Affect Healthcare Access

The transition to value-based care makes the fact that patients’ socioeconomic statuses matter when it comes to their health. “The most important part of getting good results is not the knowledge of the doctors, not the treatment, not the drug. It’s the logistics, the social support, the ability to arrange babysitting,” David Berg, MD, co-founder of Redirect Health told PwC.

One such transition that is helping patients gain access to healthcare involves microhospitals and their adoption of telemedicine technologies, which Dark Daily reported on in March.

“Right now, they seem to be popping up in large urban and suburban metro areas,” Priya Bathija, Vice President, Value Initiative American Hospital Association, told NPR. “We really think they have the potential to help in vulnerable communities that have a lack of access.”

Data Collection Challenges Pharma

The 21st Century Cures Act, along with the potential exploitation of Big Data, will make it possible for organizations to gain faster, less expensive approvals from the US Food and Drug Administration (FDA). As Dark Daily noted in April, the FDA “released guidelines on how the agency intends to regulate—or not regulate—digital health, clinical-decision-support (CDS), and patient-decision-support (PDS) software applications.

“Physician decision-support software utilizes medical laboratory test data as a significant part of a full dataset used to guide caregivers,” Dark Daily noted. “Thus, if the FDA makes it easier for developers to get regulatory clearance for these types of products, that could positively impact medical labs’ ability to service their client physicians.”

Healthcare Delivery During and Following Natural Disasters

PwC predicts the long-term physical results, financial limitations, and supply chain disruptions following natural disasters will continue to affect healthcare in 2018. The devastation can prevent many people from receiving adequate, timely healthcare.

However, new laboratory-on-a-chip (LOC) and other “lab-on-a-…” testing technologies, coupled with medical drone deliver services, can bring much need healthcare to remote, unreachable areas that lack electricity and other services. (See Dark Daily, “Lab-on-a-Fiber Technology Continues to Highlight Nano-Scale Clinical Laboratory Diagnostic Testing in Point-of-Care Environments,” April 2, 2018, and, “Johns Hopkins’ Test Drone Travels 161 Miles to Set Record for Delivery Distance of Clinical Laboratory Specimens,” November 15, 2017.)

PwC’s report is an important reminder of from where the clinical laboratory/anatomic pathology industry has come, and to where it is headed. Sharp industry leaders will pay attention to the predictions contained therein.

—Dava Stewart

Related Information:

Top Health Industry Issue of 2018

PwC Health Research Institute Top Health Industry Issues of 2018 Report: Issuu Slide Presentation

12 Defining Healthcare Issues of 2018

Is Laboratory Medicine Ready for Artificial Intelligence?

Artificial Intelligence Imaging Research Facilitates Disease Diagnosis

Blockchain Technology Could Impact How Clinical Laboratories and Pathology Groups Exchange Lab Test Data

Skepticism, Distrust of HIT by Healthcare Consumers Undermines Physician Adoption of Medical Reporting Technologies, But Is Opportunity for Pathology Groups, Clinical Laboratories

Pathologists and Clinical Lab Executives Take Note: Medicare Has New Goals and Deadlines for Transitioning from Fee-For-Service Healthcare Models to Value-Based Reimbursement

Researchers Point to Cost of Services, including Medical Laboratories, for Healthcare Spending Gap Between the US and Other Developed Countries

Telemedicine and Microhospitals Could Make Up for Reducing Numbers of Primary Care Physicians in US Urban and Metro Suburban Areas

New FDA Regulations of Clinical Decision-Support/Digital Health Applications and Medical Software Has Consequences for Medical Laboratories

Lab-on-a-Fiber Technology Continues to Highlight Nano-Scale Clinical Laboratory Diagnostic Testing in Point-of-Care Environments

Johns Hopkins’ Test Drone Travels 161 Miles to Set Record for Delivery Distance of Clinical Laboratory Specimens

Canadian Researchers Develop Low-Cost, Lens-Free Light-Field Microscope; Could Make Anatomic Pathology Labs Portable and More Affordable

Second-generation spectral fusion microscope captures light-field images in full color using artificial intelligence and mathematical models of light to develop large-scale 3D images

Researchers in Canada have developed an inexpensive, lens-free microscope that uses artificial intelligence (AI) and mathematical models of light to develop three-dimensional (3D) images. This invention has the potential to make the clinical pathology laboratory portable and affordable. And the advancement could improve access to anatomic pathology services in remote regions and less developed countries that cannot afford conventional microscopic diagnostic equipment.

New Microscope a Boon to Pathology Laboratories Worldwide

This spectral light-fusion microscope, developed by a pair of researchers from the University of Waterloo in Ontario, uses second-generation spectral light-fusion technology for capturing light-field images in full color.

“The several-hundred-dollar microscope has no lens, and uses artificial intelligence and mathematical models of light to develop 3D images at a large scale,” states a University of Waterloo news release.

The new microscope’s low price point provides a major advantage over larger traditional microscopes that require a skilled technician to electronically “stitch” together multiple images using a machine costing several hundred thousand dollars to get the same 3D effect.

“In medicine, we know that pathology is the gold standard in helping to analyze and diagnose patients, but that standard is difficult to come by in areas that can’t afford it. This technology has the potential to make pathology labs more affordable for communities that currently don’t have access to conventional equipment,” Associate Professor of Engineering Alexander Wong, PhD, PEng, said in the University of Waterloo news release.

Wong, Associate Professor and Canada Research Chair in Medical Imaging, and Systems Design Engineer Farnoud Kazemzadeh, PhD, a Postdoctoral Fellow at Environmental Bio-Detection Products and Adjunct Professor at University of Waterloo, led the research.

“Currently the technology required to operate a pathology lab is quite expensive and is largely restricted to places such as Europe and North America, which can afford them,” Kazemzadeh noted in the news release. “It would be interesting to see what a more affordable mobile pathology lab could achieve.”

Alexander Wong, PhD, PEng (above left), and Farnoud Kazemzadeh, PhD (above right), of the University of Waterloo in Ontario, Canada, developed their new spectral light-fusion microscope to make pathology more affordable for communities that cannot access conventional equipment. They patented the first version of the microscope last year and expect their technology to be a boon to mobile anatomic pathology labs. (Photo copyright: University of Waterloo.)

Wong and Kazemzadeh described the first generation of their instrument in a research paper published in Nature Scientific Reports. In that paper, the pair demonstrated for the first time that laser light-field fusion phase contrast microscopy could detect particles at nanometer resolutions.

“We introduced a wide-field lens-free on-chip phase contrast microscopy instrument capable of detecting particles at the nanometer resolution. The instrument does not require hologram magnification, specialized sample preparation, or the use of synthetic aperture- or lateral shift-based techniques to accomplish detection of nanoparticles,” they wrote.

The researchers understand the potential of their invention to expand access to pathology. They describe the microscope as “extremely simple and economical to implement, allowing for democratization and proliferation of such systems at every level of healthcare, industry, education, or research.”

The researchers’ new second-generation device can construct nanometer-resolution images with an ultra-wide field-of-view. “The microscope captures light fields that can be analyzed using the mathematical models of light and artificial intelligence to construct 3D images that are around 100 times larger than the 2D images captured by traditional microscopes,” reported The Engineer, a United Kingdom-based publication.

Shaping the Future of Clinical Laboratories

The spectral light-fusion microscope is one example of research teams exploring how to use different technologies for the assessment of human tissue. Another example that we covered in a previous Dark Daily e-briefing involved the development of a lens-free smartphone microscope by UCLA researchers. That microscope produces holographic images of tissue samples that enable pathologists to view cancer and other abnormalities at the cellular level with the same accuracy as larger and more expensive optical microscopes.

The discipline of pathology and laboratory medicine is evolving to embrace technologies that were science fiction yesterday, but today are science fact. These technologies will continue to shape the clinical laboratory industry for years to come.

—Andrea Downing Peck

 

Related Information:

Lens-free Microscope Enables Full-Color Pathology at Low Cost

Artificial Intelligence-driven Imaging Research Makes Diagnosing Disease Easier

Laser Light-field Fusion for Wide-field Lens-Free On-chip Phase Contrast Microscopy of Nanoparticles

Cheap, Full-Color Images from Lens-Free Microscope

UCLA Researchers develop Lens-Free Smartphone Microscope, Pathologists May be Able to Take the Clinical Pathology Laboratory Just About Anywhere

;