Might clinical laboratories soon be called on to conduct mass testing to find people who show little or no symptoms even though they are infected with the coronavirus?
Clinical laboratory managers understand that as demand for COVID-19 testing exceeds supplies, what testing is done is generally performed on symptomatic patients. And yet, it is the asymptomatic individuals—those who are shown to be infected with the SARS-CoV-2 coronavirus, but who experience no symptoms of the illness—who may hold the key to creating effective treatments and vaccinations.
So, as the COVID-19 pandemic persists, scientists are asking why some people who are infected remain asymptomatic, while others die. Why do some patients get severely ill and others do not? Researchers at the University of California San Francisco (UCSF) and Stanford University School of Medicine (Stanford Medicine) are attempting to answer these questions as they investigate viral transmission, masking, immunity, and more.
And pressure is increasing on researchers to find the answer. According to Monica Gandhi, MD, MPH, an infectious disease specialist and Professor of Medicine at UCSF, millions of people may be asymptomatic and unknowingly spreading the virus. Gandhi is also Associate Division Chief (Clinical Operations/Education) of the Division of HIV, Infectious Diseases, and Global Medicine at UCSF’s Zuckerberg San Francisco General Hospital and Trauma Center.
“If we did a mass testing campaign on 300 million Americans right now, I think the rate of asymptomatic infection would be somewhere between 50% and 80% of cases,” she told UCSF Magazine.
On a smaller scale, her statement was borne out. In a study conducted in San Francisco’s Mission District during the first six weeks of the city’s shelter-in-place order, UCSF researchers conducted SARS-CoV-2 reverse transcription-PCR and antibody (Abbott ARCHITECT IgG) testing on 3,000 people. Approximately 53% tested positive for COVID-19 but had no symptoms such as fever, cough, and muscle aches, according to data reported by Carina Marquez, MD, UCSF Assistant Professor of Medicine and co-author of the study, in The Mercury News.
Pandemic Control’s Biggest Challenge: Asymptomatic People
In an editorial in the New England Journal of Medicine (NEJM), Gandhi wrote that transmission of the virus by asymptomatic people is the “Achilles heel of COVID-19 pandemic control.”
In her article, Gandhi compared SARS-CoV-2, the coronavirus that causes COVID-19, to SARS-CoV-1, the coronavirus that caused the 2003 SARS epidemic. One difference lies in how the virus sheds. In the case of SARS-CoV-2, that takes place in the upper respiratory tract, but with SARS-CoV-1, it takes place in the lower tract. In the latter, symptoms are more likely to be detected, Gandhi explained. Thus, asymptomatic carriers of the coronavirus may go undetected.
“Viral loads with SARS-CoV-1, which are associated with symptom onset, peak a median of five days later than viral loads with SARS-CoV-2, which makes symptom-based detection of infection more effective in the case of SARS-CoV-1,” Gandhi wrote. “With influenza, persons with asymptomatic disease generally have lower quantitative viral loads in secretions from the upper respiratory tract than from the lower respiratory tract and a shorter duration of viral shedding than persons with symptoms, which decreases the risk of transmission from paucisymptomatic persons.”
Rick Wright (above), an insurance broker in Redwood City, Calif., was infected with the COVID-19 coronavirus while aboard a Diamond Princess Cruise. He underwent 40 days of isolation, and though he consistently tested positive for the coronavirus, he experienced no symptoms of the illness. “I never felt sick. Not a cough, wheezing, headache. Absolutely nothing,” he told Mercury News. (Photo copyright: The Mercury News.)
Stanford Studies Immune Responses in COVID-19 Patients
Meanwhile, scientists at the Stanford University School of Medicine were on their own quest to find out why COVID-19 causes severe disease in some people and mild symptoms in others.
“One of the great mysteries of COVID-19 infections has been that some people develop severe disease, while others seem to recover quickly. Now, we have some insight into why that happens,” Bali Pulendran, PhD, Stanford Professor of Pathology, Microbiology, and Immunology and Senior Author of the study in a Stanford Medicine news release.
The Stanford research suggested that three molecules—EN-RAGE, TNFSF14, and oncostatin-M—“correlated with disease and increased bacterial products in human plasma” of COVID-19 patients.
“Our multiplex analysis of plasma cytokines revealed enhanced levels of several proinflammatory cytokines and a strong association of the inflammatory mediators EN-RAGE, TNFSF14, and OSM with clinical severity of the disease,” the scientists wrote in Science.
Pulendran hypothesized that the molecules originated in patients’ lungs, which was the infection site.
“These findings reveal how the immune system goes awry during coronavirus infections, leading to severe disease and point to potential therapeutic targets,” Pulendran said in the news release, adding, “These three molecules and their receptors could represent attractive therapeutic targets in combating COVID-19.”
Clinical Laboratories May Do More Testing of Asymptomatic People
The research continues. In a televised news conference, President Trump said COVID-19 testing plays an important role in “preventing transmission of the virus.” Clearly this is true and learning why some people who are infected experience little or no symptoms may be key to defeating COVID-19.
Thus, as the nation reopens, clinical laboratories may want to find ways to offer COVID-19 testing beyond hospitalized symptomatic patients and people who show up at independent labs with doctors’ orders. As supplies permit, laboratory managers may want to partner with providers in their communities to identify people who are asymptomatic and appear to be well, but who may be transmitting the coronavirus.
Study scientists identified several currently available drugs that could inhibit growth of these “streaming filaments,” which infected cells use to go after non-infected cells
Like a scene from a bad horror movie, scientists have discovered that SARS-CoV-2, the coronavirus responsible for the COVID-19 pandemic, may be even more sinister and macabre than previously thought. The new research findings will interest those pathologists and clinical laboratory professionals who want to understand how the coronavirus spreads once it enters the body.
Headed by scientists from the University of San Francisco (UCSF), a team of international researchers discovered that “when the SARS-CoV-2 virus infects a human cell, it sets off a ghoulish transformation,” reported the Los Angeles Times (LA Times).
“Obeying instructions from the virus,” the LA Times continued, “the newly infected cell sprouts multi-pronged tentacles studded with viral particles. These disfigured zombie cells appear to be using those streaming filaments, or filopodia, to reach still-healthy neighboring cells. The protuberances appear to bore into the cells’ bodies and inject their viral venom directly into those cells’ genetic command centers—thus creating another zombie.”
As If the Coronavirus Weren’t Bad Enough!
“It’s just so sinister that the virus uses other mechanisms to infect other cells before it kills the cell,” Nevan Krogan, PhD, Professor, Department of Cellular Molecular Pharmacology at the UCSF School of Medicine, one of the study’s authors, told the LA Times.
The images above taken with an electron microscope show the streaming filaments—or as the researchers described in their published study, “filopodial protrusions possessing budding viral particles”—reaching out from cells infected with the SARS-CoV-2 coronavirus looking for other cells to infect. (Photos copyright: Los Angeles Times/Elizabeth Fischer, MA, Chief, RML Microscopy Unit, NIAID/NIH.)
SARS-CoV-2 Has Evolved, Study Suggests
Prior to this discovery, scientists believed that the coronavirus infected cells in a typical fashion by finding receptors on the surface of cells lining an individual’s mouth, nose, respiratory tract, lungs or blood vessels, and eventually replicating and invading larger cells. However, this new research may suggest that the virus has evolved and developed new ways to pass quickly and effectively from cell to cell.
While some other illnesses, including smallpox, human immunodeficiency virus (HIV), and some influenza viruses have been known to use filopodia to enhance their ability to infect cells, Krogan contends that those other viruses do not seem to have the prolific growth of the SARS-CoV-2 filopodia.
“By conducting a systematic analysis of the changes in phosphorylation when SARS-CoV-2 infects a cell, we identified several key factors that will inform not only the next areas of biological study, but also treatments that may be repurposed to treat patients with COVID-19,” he said, in a UCSF news release.
UCSF Study Identifies Drugs, Compounds That May Disrupt Growth of Filopodia
One key finding is that the coronavirus was utilizing a specific type of molecule from a family of cellular helpers known as Kinase to create the filopodia.
The researchers conducted a “quantitative mass spectrometry-based phosphoproteomics survey of SARS-CoV-2 infection in Vero E6 cells,” the study noted, which revealed a “dramatic rewiring of phosphorylation on host and viral proteins.
“SARS-CoV-2 infection promoted casein kinase 2 (CK2) and p38 MAPK activation, production of diverse cytokines, and shutdown of mitotic kinases, resulting in cell cycle arrest,” the study continued, adding, “Infection also stimulated a marked induction of CK2-containing filopodial protrusions possessing budding viral particles.
“Eighty-seven drugs and compounds were identified by mapping global phosphorylation profiles to dysregulated kinases and pathways. We found pharmacologic inhibition of the p38, CK2, CDK, AXL, and PIKFYVE kinases to possess antiviral efficacy, representing potential COVID-19 therapies,” the researchers concluded.
To determine if they might be helpful in combating COVID-19, the UCSF research team tested drugs and compounds that were either already cleared to market by the US federal Food and Drug Administration (FDA), in clinical trials, or under preclinical development.
After discovering the Kinase connection, the scientists focused on specialized drugs known as Kinase inhibitors.
“We narrowed in on about a dozen, and we highlighted about six or seven that look particularly potent in a laboratory setting,” Krogan told ABC News. “And we’re very excited now to try and take these into clinical trials.”
Among the drugs the study identified as potentially being able to disrupt the creation of filopodia and slow the spread of COVID-19 in the body are:
Silmitasertib: A drug that is currently in the clinical trial stages as a treatment for bile duct cancer and other cancers, including hematological and lymphoid malignancies;
“We are encouraged by our findings that drugs targeting differentially phosphorylated proteins inhibited SARS-CoV-2 infection in cell culture,” said Kevan Shokat, PhD, Professor of Cellular and Molecular Pharmacology at UCSF, and co-author of the study, in the UCSF news release. “We expect to build upon this work by testing many other kinase inhibitors, while concurrently conducting experiments with other technologies to identify underlying pathways and additional potential therapeutics that may intervene in COVID-19 effectively.”
Presently, the UCSF study provides no direct benefit to COVID-19 illness patients or clinical laboratories performing SARS-CoV-2 testing. However, that could change rapidly. Pathologists and medical laboratory managers will want to keep an eye on this research, because it may lead to new treatments for COVID-19 that would require increased clinical laboratory testing to identify people infected with the coronavirus.
Though some experts claim widespread antibody testing is key to effective public health safety, the WHO warns positive serological tests may not indicate immunity from reinfection or transmission of SARS-CoV-2
It may be the largest program of clinical laboratory testing ever conducted in the United States. Health officials are preparing to undertake large-scale serological surveys (serosurveys) to detect and track previously undetected cases of SARS-CoV-2, the novel coronavirus, that causes the COVID-19 illness.
Microbiologists, epidemiologists, and medical laboratory leaders will be interested in these studies, which are aimed at determining how many adults in the US with no confirmed history of SARS-CoV-2 infection actually possess antibodies to the coronavirus.
Serological screening testing may also enable employers to identify employees who can safely return to their job. And researchers may be able to identify communities and populations that have been most affected by the virus.
Serological Study of COVID-19 Taking Place in Five States
In an interview with Science, Michael Busch, MD, PhD, Senior Vice President, Research and Scientific Affairs of Vitalant (formerly Blood Systems), one of the nation’s oldest and largest nonprofit community blood service providers, and Director of the Vitalant Research Institute, discussed several serological studies in which he is involved. The first study, which he said is being funded by the National Institutes of Health (NIH), is taking place in six metropolitan regions in the US: Seattle, New York City, San Francisco, Los Angeles, Boston, and Minneapolis.
The interesting twist in these studies is that they will test blood samples from people donating blood. In March, participating blood centers in each region started saving 1,000 donor samples per month. Six thousand samples will be assessed monthly for a six-month period using an antibody testing algorithm that enables researchers to monitor how people develop SARS-CoV-2 antibodies over time.
Busch told Science this regional study will evolve into three “national, fully representative serosurveys of the US population using blood donors.” This particular national serosurvey will study 50,000 donations in September and December of 2020 and in November 2021.
“We’re going to be estimating overall antibody prevalence to SARS-CoV-2 within each state, but also map it down within the states to regions and metropolitan urban areas, and look at the differences,” Busch told Science, which called the serosurvey “unprecedented.”
“It’s certainly the largest serosurvey I’ve ever been involved with,” Busch said.
In the third NIH serosurvey, according to Busch, NIH blood-donor serosurveys will be compared with results from population serosurveys taking place through the University of Washington and University of California San Francisco, which involve neighborhood door knocking and sampling from hematology labs.
“An antibody test is looking back into the immune system’s history with a rearview mirror,” said Matthew J. Memoli, MD (above,) an infection disease specialist with the NIH and Director of the National Institute of Allergy and Infectious Diseases (NIAID), in a news release. “By analyzing an individual’s blood, we can determine if that person has encountered SARS-CoV-2 previously.” (Photo copyright: National Institutes of Health.)
Some of the SARS-CoV-2 serological surveys underway include:
The National Institutes of Health serosurvey involving as many as 10,000 adults in the US who have no confirmed history of infection with SARS-CoV-2, which will analyze blood samples for two types of antibodies—anti-SARS-CoV-2 protein IgG and IgM. Researchers also may perform additional tests to evaluate volunteers’ immune responses to the virus.
A World Health Organization (WHO) coordinated follow-up study to its Solidarity Trial named Solidarity 2, which will “pool data from research groups in different countries to compare rates of infection,” which WHO officials say is ‘critical’ to understanding the true extent of the pandemic and to inform policy, Research Professionals News reported.
In Germany, the Robert Koch Institute, the country’s disease control and prevention agency, is tackling Europe’s first large-scale COVID-19 antibody testing. Its three-phase study will include serological testing on blood from donation centers, followed by testing on blood samples from coronavirus regional hotspots and then the country’s broader population.
But Can Serological Testing Prove Immunity to COVID-19?
However, whether having COVID-19 antibodies will make people immune to reinfection or unable to spread the disease is not yet known.
“We don’t have nearly the immunological or biological data at this point to say that if someone has a strong enough immune response that they are protected from symptoms, … that they cannot be transmitters,” Michael Mina, MD, PhD, Assistant Professor of Epidemiology at Harvard’s T.H. Chan School of Public Health and Associate Medical Director in Clinical Microbiology (molecular diagnostics) in the Department of Pathology at Brigham and Women’s Hospital, told STAT.
The Times of Sweden reported the WHO warned in mid-April that there is no proof recovering from COVID-19 provides immunity.
“There are a lot of countries that are suggesting using rapid diagnostic serological tests to be able to capture what they think will be a measure of immunity,” said Maria Van Kerkhove, PhD, the WHO’s Technical Lead for COVID-19, at a news conference in Geneva, Switzerland, the Times of Sweden reported.
“Right now, we have no evidence that the use of a serological test can show that an individual has immunity or is protected from reinfection,” she said, adding, “These antibody tests will be able to measure that level of seroprevalence—that level of antibodies—but that does not mean that somebody with antibodies [is] immune.”
In addition, the reliability and quality of some serological tests produced in China, as well as some being manufactured in the US, have come into question, the Financial Times reported.
Nevertheless, as serological testing for COVID-19 becomes more widespread, clinical laboratories should plan to play an ever-increasing role in the battle to stop a second wave of the epidemic in this country.
Because of ‘shelter in place’ orders, many anatomic pathologists are reviewing digital images from home during the COVID-19 outbreak and demonstrating the value of whole slide imaging, digital pathology, and CMS’ recent amended remote sign-out policy
COVID-19 is already triggering many permanent changes in the way healthcare is organized and delivered in the United States. However, not until the SARS-CoV-2 pandemic eases will the full extent of these changes become visible. This will be particularly true for anatomic pathology and the profession’s expanded use of telepathology, digital pathology, and whole-slide imaging.
Since early March, specimen referrals and revenues have collapsed at anatomic pathology groups and laboratories across the nation. Dark Daily’s sister publication, The Dark Report (TDR), was first to quantify the magnitude of this collapse in tissue referrals to pathology groups. In an interview with The Dark Report, Kyle Fetter, Executive Vice President and General Manager of Diagnostic Services at XIFIN, Inc., explained that pathology clients using XIFIN’s revenue cycle management services were seeing an average 40% decrease in specimens. And, for certain pathology sub-specialties, the drop-off in specimen referrals was as much as 90%. (See TDR, “From Mid-March, Labs Saw Big Drop in Revenue,” April 20, 2020.)
The College of American Pathologists (CAP) appealed to the Centers for Medicare and Medicaid Services (CMS) to allow pathologists to work remotely. In response, CMS issued a memorandum which stated, “Due to the public health emergency posed by COVID-19 and the urgent need to expand laboratory capacity, CMS is exercising its enforcement discretion to adopt a temporary policy of relaxed enforcement in connection with laboratories located at temporary testing sites under the conditions outlined herein.”
Since then, many physicians, including pathologists, have quickly adapted to working remotely in some form.
Push for Remote Pathology Services Acknowledges Anatomic Pathologist Shortage
The CMS memorandum (QSO-20-21-CLIA), which the federal agency issued to laboratory surveyors on March 26, 2020, notes that CMS will exercise “enforcement discretion to ensure pathologists may review pathology slides remotely” if certain defined conditions are met.
CMS’ decision, which “is applicable only during the COVID-19 public health emergency,” is intended to increase capacity by allowing remote site review of clinical laboratory data, results, and pathology slides.
Ordinarily, CLIA regulations for cytology (a branch of study that focuses on the biological structure of cells) state that cytology slide preparations must be evaluated on the premises of a laboratory that is certified to conduct testing in the subspecialty of cytology. However, a fast-acting Congressional letter sent by 37 members of Congress to US Department of Health and Human Services (HHS) Secretary Alex Azar II, MD, states, “it is unwise and unnecessary to overburden the remaining pathologists with excess work due to staffing shortages, thereby increasing the risk of burnout, medical error, and further shortages in staffing due to exposure. The number of COVID-19 cases will increase and peak over the next two months and will stretch existing healthcare systems to their limits.”
Decreasing Number of ‘Active Pathologists’ Drives Adoption of Telepathology, Digital Pathology, and Whole-slide Imaging
The current COVID-19 outbreak is just the latest factor in support of enabling remote review of anatomic pathology images and cases. The trend of using telepathology, whole-slide imaging (WSI), and digital pathology systems has been gathering momentum for several years. Powerful economic forces support this trend.
The Dark Report devoted its June 10, 2019, issue to a deep dive of the challenges currently facing the anatomic pathology profession. In particular, TDR noted a study published May 31, 2019, in the Journal of the American Medical Association (JAMA) Network Open, titled, “Trends in the US and Canadian Pathologist Workforces from 2007 to 2017.” The study’s authors—pathologists in the United States and Canada—reported that between 2007 and 2017 the number of active pathologists in the United States decreased from 15,568 to 12,839—a 17.53% decline.
TDR noted that these findings imply there are fewer pathologists in the United States today in active practice to handle the steady increase in the number of cases requiring diagnostic review. In turn, this situation could lead to delays in diagnoses detrimental to patient care.
In the United States, the COVID-19 pandemic created an “immediate need for remote sign-outs, reviews, and consults,” said Mike Bonham, MD, PhD (above), Chief Medical Officer for Proscia, a digital pathology software developer, in an interview with Dark Daily. “In the context of highly relevant workflow and workforce challenges, it reinforces the opportunity for wider adoption of digital pathology.” Prior to the outbreak of COVID-19, several distinct forces were driving adoption and use of digital pathology in combination with traditional microscopy, he said. (Photo copyright: Proscia.)
Distinct Forces Beginning to Reshape Anatomic Pathology
In recent years, the anatomic pathology profession has faced growing financial pressure, a shrinking workforce, and a surge in the global demand for pathology—issues that come at a time when biopsies and cancer diagnostics require greater expertise.
The UCSF School of Medicine started with frozen slide sections and moved to the broader volume of pathology slides. Since 2015, UCSF’s School of Medicine has moved toward a fully digital pathology operation and has serialized the adoption by specialty, according to Zoltan Laszik, MD, PhD, attending physician at UCSF and Professor of Clinical Pathology in UCSF’s Departments of Pathology and Laboratory Medicine.
Laszik is among a handful of specialists and digital pathology early adopters who collaborated on the new Dark Daily white paper, which is available for free download.
Through the adoption of digital pathology, glass slides are digitized using a whole-slide image scanner, then analyzed through image viewing software. Although the basic viewing functionality is not drastically different than that provided by a microscope, digitization does bring improvements in lab efficiency, diagnostic accuracy, image management, workflows, and revenue enhancements.
Additionally, artificial intelligence (AI)-based computational applications have emerged as an integral part of the digital pathology workflow in some settings, the white paper explains.
“These developments are important to anatomic pathologists because the traditional pathology business model continues to transform at a steady pace,” noted Robert L. Michel, Editor-in-Chief of The Dark Report.
Anthony Magliocco, MD, FRCPC, FCAP, President and CEO of Protean BioDiagnostics and former Professor and Chair of Pathology at Moffitt Cancer Center, is featured in the white paper as well. His new pathology service model provides routine pathology services, precision oncology, second opinions, liquid biopsies, genetics, and genomics to cancer centers from a Florida-based specialty laboratory.
To register for this important learning opportunity, click here or place this URL in your web browser: https://www.darkdaily.com/webinar/streamlined-operations-increased-revenue-higher-quality-of-care-conclusive-evidence-on-the-value-of-adopting-digital-pathology-in-your-lab/.
These digital pathology technologies represent an innovative movement shaping the present and future of pathology services. Pathologists wanting to learn more are encouraged to sign up for the May 13 webinar, which will build on the body of evidence and commentary that is included in the new white paper, and which will be available for free on-demand download following the live broadcast.
By offering DTC preventative gene sequencing, hospital leaders
hope to help physicians better predict cancer risk and provide more accurate
diagnoses
Two Boston health systems, Brigham and Women’s Hospital and Massachusetts General Hospital (MGH), are the latest to open preventative gene sequencing clinics and compete with consumer gene sequencing companies, such as 23andMe and Ancestry, as well as with other hospital systems that already provide similar services.
This may provide opportunities for clinical laboratories. However, some experts are concerned that genetic sequencing may not be equally available to patients of all socioeconomic classes. Nor is it clear how health systems plan to pay for the equipment and services, since health insurance companies continue to deny coverage for “elective” gene sequencing, or when there is not a “clear medical reason for it, such as for people with a long family history of cancer,” notes STAT.
Therefore, not everyone is convinced of the value of gene sequencing to either patients or hospitals, even though advocates tout gene sequencing as a key element of precision medicine.
Is Preventative Genetic Sequencing Ready for the Masses?
Brigham’s Preventive Genomics Clinic offers comprehensive DNA sequencing, interpretation, and risk reporting to both adults and children. And MGH “plans to launch its own clinic for adults that will offer elective sequencing at a similar price range as the Brigham,” STAT reported.
The Brigham and MGH already offer similar gene sequencing services as other large health systems, such as Mayo Clinic and University of California San Francisco (UCSF), which are primarily used for research and cancer diagnoses and range in price depending on the depth of the scan, interpretation of the results, and storage options.
However, some experts question whether offering the
technology to consumers for preventative purposes will benefit anyone other
than a small percentage of patients.
“It’s clearly not been demonstrated to be cost-effective to promote this on a societal basis,” Robert Green, MD, MPH, medical geneticist at Brigham and Women’s Hospital, and professor of genetics at Harvard, told STAT. “The question that’s hard to answer is whether there are long-term benefits that justify those healthcare costs—whether the sequencing itself, the physician visit, and any downstream testing that’s stimulated will be justified by the situations where you can find and prevent disease.”
Additionally, large medical centers typically charge more
for genomic scans than consumer companies such as 23andMe and Ancestry. Hospital-based
sequencing may be out of the reach of many consumers, and this concerns some
experts.
“The idea that genomic sequencing is only going to be
accessible by wealthy, well-educated patrons who can pay out of pocket is
anathema to the goals of the publicly funded Human Genome Project,” Jonathan
Berg, MD, PhD, Genetics Professor, University of North Carolina at Chapel
Hill, told Scientific
American.
And, according to the American Journal of Managed Care, “It’s estimated that by 2021, 100 million people will have used a direct-to-consumer (DTC) genetic test. As these tests continue to gain popularity, there is a need for educating consumers on their DTC testing results and validating these results with confirmatory testing in a medical-grade laboratory.”
This is why it’s critical that clinical laboratories and
anatomic pathology groups have a genetic testing and gene sequencing strategy,
as Dark
Daily reported.
David Bick, MD, Chief Medical Officer at the HudsonAlpha Institute for Biotechnology and Medical Director of the Smith Family Clinic for Genomic Medicine, told Scientific American, “there’s just more and more interest from patients and families not only because of 23andMe and the like, but because there’s just this understanding that if you can find out information about your health before you become sick, then really our opportunity as physicians to do something to help you is much greater.”
In an article he penned for Medium, Robert Green, MD, MPH (shown above counseling a patient), medical geneticist at Brigham and Women’s Hospital and professor of genetics at Harvard, wrote, “The ultimate aim of our Genomes2People Research Program is to contribute to the transformation of medicine from reactive to proactive, from treatment-oriented to preventive. We are trying to help build the evidence base that will justify societal decision to make these technologies and services accessible to anyone who wants them, regardless of means, education or race and ethnicity.” (Photo copyright: Wall Street Journal.)
Is Preventative Genomics Elitist?
As large medical centers penetrate the consumer genetic
testing market some experts express concerns. In a paper he wrote for Medium,
titled, “Is Preventive Genomics Elitist?” Green asked, “Is a service like this
further widening the inequities in our healthcare system?”
Green reported that while building the Preventive Genomics Clinic at Brigham, “we … struggled with the reality that there is no health insurance coverage for preventive genomic testing, and our patients must therefore pay out of pocket. This is a troubling feature for a clinic at Brigham and Women’s Hospital, which is known for its ties to communities in Boston with diverse ethnic and socioeconomic backgrounds.”
Most of Brigham’s early genetics patients would likely be “well-off,
well-educated, and largely white,” Green wrote. “This represents the profile of
typical early adopters in genetic medicine, and in technology writ large. It
does not, however, represent the Clinic’s ultimate target audience.”
More Data for Clinical Laboratories
Nevertheless, preventive genomics programs offered by large
health systems will likely grow as primary care doctors and others see evidence
of value.
Therefore, medical laboratories that process genetic
sequencing data may soon be working with growing data sets as more people reach
out to healthcare systems for comprehensive DNA sequencing and reporting.