News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Samsung Medical Center Combines 5G with Digital Pathology to Speed Anatomic Pathologist’s Readings of Frozen Sections, Cuts Test TAT in Half

HIMSS names SMC a ‘world leader’ in digital pathology and awards the South Korean Healthcare provider Stage 7 DIAM status  

Anatomic pathologists and clinical laboratory managers in hospitals know that during surgery, time is of the essence. While the patient is still on the surgical table, biopsies must be sent to the lab to be frozen and sectioned before going to the surgical pathologist for reading. Thus, shortening time to answer for frozen sections is a significant benefit.

To address an overwhelming number of frozen section tests and delays in surgical pathology turnaround times (TATs), Samsung Medical Center (SMC) in Seoul, South Korea, used 5G network connectivity to develop an integrated digital pathology system that is “enhancing the speed of clinical decision-making across its facilities,” according to Healthcare IT News

This effort in surgical pathology is part of a larger story of the digital transformation underway across all service lines at this hospital. For years, SMC has been on track to become one of the world’s “intelligent hospitals,” and it is succeeding. In February, SMC became the first healthcare provider to achieve Stage 7 in the HIMSS Digital Imaging Adoption Model (DIAM), which “assesses an organization’s capabilities in the delivery of medical imaging,” Healthcare IT News reported.

As pathologists and clinical laboratory leaders know, implementation of digital pathology is no easy feat. So, it’s noteworthy that SMC has brought together disparate technologies to reduce turnaround times, and that the medical center has caught the eye of leading health information technology (HIT) organizations. 

Kee Taek Jang, MD

“The digital pathology system established by the pathology department and SMC’s information strategy team could be one of the good examples of the fourth industrial revolution model applied to a hospital system,” anatomic pathologist Kee Taek Jang, MD (above), Professor of Pathology, Sungkyunkwan University School of Medicine, Samsung Medical Center told Healthcare IT News. Clinical laboratory leaders and surgical pathologists understand the value digital pathology can bring to faster turnaround times. (Photo copyright: Samsung Medical Center.)

Anatomic Pathologists Can Read Frozen Sections on Their Smartphones

Prior to implementation of its 5G digital pathology system, surgeons and their patients waited as much as 20 minutes for anatomic pathologists to traverse SMC’s medical campus to reach the healthcare provider’s cancer center diagnostic reading room, Healthcare IT News reported.

Now, SMC’s integrated digital pathology system—which combines slide scanners, analysis software, and desktop computers with a 5G network—has enabled a “rapid imaging search across the hospital,” Healthcare IT News noted. Surgical pathologists can analyze tissue samples faster and from remote locations on digital devices that are convenient to them at the time, a significant benefit to patient care.

“The system has been effective in reducing the turnaround time as pathologists can now attend to frozen test consultations on their smartphone or tablet device via 5G network anywhere in the hospital,” Jean-Hyoung Lee, SMC’s Manager of IT Infrastructure, told Healthcare IT News which noted these system results:

Additionally, through the 5G network, pathologists can efficiently access CT scans and MRI data on proton therapy cancer treatments. Prior to the change, the doctors had to download the image files in SMC’s Proton Therapy Center, according to a news release from KT Corporation, a South Korean telecommunications company that began working with SMC on building the 5G-connected digital pathology system in 2019.

SMC Leads in Digital Pathology: HIMSS

Earlier this year, HIMSS named SMC a “world leader” in digital pathology and first to reach Stage 7 in the Digital Imaging Adoption Model (DIAM), Healthcare IT News reported.

DIAM is an approach for gauging an organization’s medical imaging delivery capabilities. To achieve Stage 7—External Image Exchange and Patient Engagement—healthcare providers must also have achieved all capabilities outlined in Stages 5 and 6.

In addition, the following must also have been adopted:

  • The majority of image-producing service areas are exchanging and/or sharing images and reports and/or clinical notes based on recognized standards with care organizations of all types, including local, regional, or national health information exchanges.
  • The application(s) used in image-producing service areas support multidisciplinary interactive collaboration.
  • Patients can make appointments, and access reports, images, and educational content specific to their individual situation online.
  • Patients are able to electronically upload, download, and share their images.

“This is the most comprehensive use of integrated digital pathology we have seen,” Andrew Pearce, HIMSS VP Analytics and Global Advisory Lead, told Healthcare IT News.

SMC’s Manager of IT Planning Seungho Lim told Healthcare IT News the medical center’s goal is to become “a global advanced intelligent hospital through digital health innovation.” The plan is to offer, he added, “super-gap digital services that prioritize non-contact communication and cutting-edge technology.”

For pathologists and clinical laboratory leaders, SMC’s commitment to 5G to move digital pathology data is compelling. And its recognition by HIMSS could inspire more healthcare organization to make changes in medical laboratory workflows. SMC, and perhaps other South Korean healthcare providers, will likely continue to draw attention for their healthcare IT achievements.   

Donna Marie Pocius

Related Information:

Using 5G to Cut Down Diagnostic Reading by Half

KT and Samsung Medical Center to Build 5G Smart Hospital

Samsung Medical Center Achieves Stage 7 DIAM and EMRAM

Finding the Future of Care Provision: the Role of Smart Hospitals

K-Hospital Fair 2022, Success in Digital Transformation (DX) Introducing “Smart Logistics”

Digital Health Market to Hit $809.2 Billion by 2030: Grand View Research, Inc.

South Korea: The Perfect Environment for Digital Health

Dermatopathologists May Soon Have Useful New Tool That Uses AI Algorithm to Detect Melanoma in Wide-field Images of Skin Lesions Taken with Smartphones

MIT’s deep learning artificial intelligence algorithm demonstrates how similar new technologies and smartphones can be combined to give dermatologists and dermatopathologists valuable new ways to diagnose skin cancer from digital images

Scientists at the Massachusetts Institute of Technology (MIT) and other Boston-area research institutions have developed an artificial intelligence (AI) algorithm that detects melanoma in wide-field images of skin lesions taken on smartphones. And its use could affect how dermatologists and dermatopathologists diagnose cancer.

The study, published in Science Translational Medicine, titled, “Using Deep Learning for Dermatologist-Level Detection of Suspicious Pigmented Skin Lesions from Wide-Field Images,” demonstrates that even a common device like a smartphone can be a valuable resource in the detection of disease.

According to an MIT press release, “The paper describes the development of an SPL [Suspicious Pigmented Lesion] analysis system using DCNNs [Deep Convolutional Neural Networks] to more quickly and efficiently identify skin lesions that require more investigation, screenings that can be done during routine primary care visits, or even by the patients themselves. The system utilized DCNNs to optimize the identification and classification of SPLs in wide-field images.”

The MIT scientists believe their AI analysis system could aid dermatologists, dermatopathologists, and clinical laboratories detect melanoma, a deadly form of skin cancer, in its early stages using smartphones at the point-of-care.  

Luis Soenksen, PhD

“Our research suggests that systems leveraging computer vision and deep neural networks, quantifying such common signs, can achieve comparable accuracy to expert dermatologists,” said Luis Soenksen, PhD (above), Venture Builder in Artificial Intelligence and Healthcare at MIT and first author of the study in an MIT press release. “We hope our research revitalizes the desire to deliver more efficient dermatological screenings in primary care settings to drive adequate referrals.” The MIT study demonstrates that dermatologists, dermatopathologists, and clinical laboratories can benefit from using common technologies like smartphones in the diagnosis of disease. (Photo copyright: Wyss Institute Harvard University.)

Improving Melanoma Treatment and Patient Outcomes

Melanoma develops when pigment-producing cells called melanocytes start to grow out of control. The cancer has traditionally been diagnosed through visual inspection of SPLs by physicians in medical settings. Early-stage identification of SPLs can drastically improve the prognosis for patients and significantly reduce treatment costs. It is common to biopsy many lesions to ensure that every case of melanoma can be diagnosed as early as possible, thus contributing to better patient outcomes.

“Early detection of SPLs can save lives. However, the current capacity of medical systems to provide comprehensive skin screenings at scale are still lacking,” said Luis Soenksen, PhD, Venture Builder in Artificial Intelligence and Healthcare at MIT and first author of the study in the MIT press release.

The researchers trained their AI system by using 20,388 wide-field images from 133 patients at the Gregorio Marañón General University Hospital in Madrid, as well as publicly available images. The collected photographs were taken with a variety of ordinary smartphone cameras that are easily obtainable by consumers.

They taught the deep learning algorithm to examine various features of skin lesions such as size, circularity, and intensity. Dermatologists working with the researchers also visually classified the lesions for comparison.

Smartphone image of pigmented skin lesions

When the algorithm is “shown” a wide-field image like that above taken with a smartphone, it uses deep convolutional neural networks to analyze individual pigmented lesions and screen for early-stage melanoma. The algorithm then marks suspicious images as either yellow (meaning further inspection should be considered) or red (indicating that further inspection and/or referral to a dermatologist is required). Using this tool, dermatopathologists may be able to diagnose skin cancer and excise it in-office long before it becomes deadly. (Photo copyright: MIT.)

“Our system achieved more than 90.3% sensitivity (95% confidence interval, 90 to 90.6) and 89.9% specificity (89.6 to 90.2%) in distinguishing SPLs from nonsuspicious lesions, skin, and complex backgrounds, avoiding the need for cumbersome individual lesion imaging,” the MIT researchers noted in their Science Translational Medicine paper.

In addition, the algorithm agreed with the consensus of experienced dermatologists 88% of the time and concurred with the opinions of individual dermatologists 86% of the time, Medgadget reported.

Modern Imaging Technologies Will Advance Diagnosis of Disease

According to the American Cancer Society, about 106,110 new cases of melanoma will be diagnosed in the United States in 2021. Approximately 7,180 people are expected to die of the disease this year. Melanoma is less common than other types of skin cancer but more dangerous as it’s more likely to spread to other parts of the body if not detected and treated early.

More research is needed to substantiate the effectiveness and accuracy of this new tool before it could be used in clinical settings. However, the early research looks promising and smartphone camera technology is constantly improving. Higher resolutions would further advance development of this type of diagnostic tool.

In addition, MIT’s algorithm enables in situ examination and possible diagnosis of cancer. Therefore, a smartphone so equipped could enable a dermatologist to diagnose and excise cancerous tissue in a single visit, without the need for biopsies to be sent to a dermatopathologist.

Currently, dermatologists refer a lot of skin biopsies to dermapathologists and anatomic pathology laboratories. An accurate diagnostic tool that uses modern smartphones to characterize suspicious skin lesions could become quite popular with dermatologists and affect the flow of referrals to medical laboratories.

JP Schlingman

Related Information:

Software Spots Suspicious Skin Lesions on Smartphone Photos

An Artificial Intelligence Tool That Can Help Detect Melanoma

Using Deep Learning for Dermatologist-level Detection of Suspicious Pigmented Skin Lesions from Wide-field Images

Mobile Device Software Companies Are Developing Smartphone Apps That Use Artificial Intelligence to Test for COVID-19, Potentially Bypassing the Clinical Laboratory Altogether

This is another example of technology companies working to develop medical laboratory testing that consumers can use without requiring a doctor’s order for the test

Here’s new technology that could be a gamechanger in the fight against COVID-19 if further research allows it to be used in patient care. The goal of the researchers involved is to enable individuals to test for the SARS-CoV-2 coronavirus from home with the assistance of a smartphone app enhanced by artificial intelligence (AI).

Such an approach could bypass clinical laboratories by allowing potentially infected people to confirm their exposure to the coronavirus and then consult directly with healthcare providers for diagnosis and treatment.

The at-home test is being developed through a partnership between French pharmaceutical company Sanofi and San Jose, Calif.-based Luminostics, creator of a smartphone-based diagnostic platform that “can detect or measure bacteria, viruses, proteins, and hormones from swabs, saliva, urine, and blood,” according to the company’s website.

Users who wish to self-test collect a specimen from their nose via a swab and then insert that swab into a device attached to a smartphone. The device uses chemicals and nanoparticles to examine the collected sample. If the individual has the virus, the nanoparticles in the specimen glow in a way visible to smartphone cameras. The device generates data and AI in the smartphone app processes a report. The app informs the user of the results of this COVID-19 test, and it also enables the user to connect to a doctor directly through telehealth video conferencing to discuss a diagnosis. 

Alan Main, Sanofi’s Executive Vice President, Consumer Healthcare, and Chair of the Global Self-Care Federation
“This partnering project could lead to another important milestone in Sanofi’s fight against COVID-19,” said Alan Main, Sanofi’s Executive Vice President, Consumer Healthcare, and Chair of the Global Self-Care Federation, in a press release. “The development of a self-testing solution with Luminostics could help provide clarity to individuals—in minutes—on whether or not they are infected.” (Photo copyright: Global Self-Care Federation.)

According to the press release, the diagnostic platform is composed of:

  • an iOS/Android app to instruct a user on how to run the test, capture and process data to display test results, and then to connect users with a telehealth service based on the results;
  • a reusable adapter compatible with most types of smartphones; and
  • consumables for specimen collection, preparation, and processing.

The COVID-19 test results are available within 30 minutes or less after collecting the sample, notes the Sanofi press release. Advantages cited for having a fast, over-the-counter (OTC) solution for COVID-19 testing include:

  • easy access and availability;
  • reduced contact with others, which lowers infection risk; and
  • timely decision-making for any necessary treatments.

The two companies plan to have their COVID-19 home-testing application available for the public before the end of the year, subject to government regulatory clearances. They intend to make their OTC solution available through consumer and retail outlets as well as ecommerce sites.

Can Sound Be Used to Diagnose COVID-19?

Another smartphone app under development records the sound of coughs to determine if an individual has contracted COVID-19. Researchers at the Swiss Federal Institute of Technology Lausanne (École Polytechnique Fédérale de Lausanne or EPFL) in Switzerland created the Cough-based COVID-19 Fast Screening Project (Coughvid), which utilizes a mobile application and AI to analyze the sound of a person’s cough to determine if it resembles that of a person infected with the SARS-CoV-2 coronavirus. 

The inspiration for this project came from doctors who reported that their COVID-19 patients have a cough with a very distinctive sound that differs from other illnesses. The cough associated with COVID-19, according the EPFL website, is a dry cough that has a chirping intake of breath at the end.

“The World Health Organization (WHO) has reported that 67.7% of COVID-19 patients exhibit a ‘dry cough,’ meaning that no mucus is produced, unlike the typical ‘wet cough’ that occurs during a cold or allergies. Dry coughs can be distinguished from wet coughs by the sound they produce, which raises the question of whether the analysis of the cough sounds can give some insights about COVID-19. Such cough sounds analysis has proven successful in diagnosing respiratory conditions like pertussis [Whooping Cough], asthma, and pneumonia,” states the EPFL website.

“We have a lot of contact with medical doctors and some of them told us that they usually were able to distinguish, quite well, from the sound of the cough, if patients were probably infected,” Tomas Teijeiro Campo, PhD, Postdoc Researcher with EPFL and one of the Coughvid researchers, told Business Insider.

The Coughvid app is in its early developmental stages and the researchers behind the study are still collecting data to train their AI. To date, the scientists have gathered more than 15,000 cough samples of which 1,000 came from people who had been diagnosed with COVID-19. The app is intended to be used as a tool to help people decide whether to seek out a COVID-19 clinical laboratory test or medical treatment. 

“For now, we have this nice hypothesis. There are other work groups working on more or less the same approach, so we think it has a point,” said Teijeiro Campo. “Soon we will be able to say more clearly if it’s something that’s right for the moment.”

The other scientists involved in developing AI-driven smartphone apps that use sound to diagnose COVID-19 include research teams at Carnegie Mellon University and New York University, according The Wall Street Journal.

With additional research, innovative technologies such as these could change how clinical laboratories interact with diagnosticians and patients during pandemics. And, if proven accurate and efficient, smartphone apps in the diagnosis process could become a standard, potentially altering the path of biological specimens flowing to medical laboratories.

—JP Schlingman

Related Information:

Covid-19: Smartphone-Based Tests to Do at Home

This COVID-19 App Would Listen to Your Cough and Use AI to Predict Whether You Have Coronavirus

Sanofi and Luminostics to Join Forces on Developing Breakthrough COVID-19 Smartphone-based Self-testing Solution

Smartphone Apps Enable Healthcare Consumers to Receive Primary Care without Traditional Office Visits, But How Will They Provide Needed Medical Laboratory Samples?

These virtual office visits use artificial intelligence and text messaging to allow real physicians to diagnose patients, write prescriptions, and order clinical laboratory tests

Clinical laboratories may soon be receiving test orders from physicians who never see their patients in person, instead evaluating and diagnosing them through a smartphone app. In response to major changes in the primary care industry—mostly driven by consumer demand—mobile app developers are introducing new methods for delivering primary care involving smartphones and artificial intelligence (AI).

Medical laboratories and pathology groups should prepare for consumers who expect their healthcare to be delivered in ways that don’t require a visit to a traditional medical office. One question is how patients using virtual primary care services will provide the specimens required for clinical laboratory tests that their primary care providers want performed?

Two companies on the forefront of such advances are 98point6 and K Health, and they provide a glimpse of primary care’s future. The two companies have developed smartphone apps that incorporate AI and the ability to interact with real physicians via text messaging.

Virtual Primary Care 24/7 Nationwide

Dark Daily has repeatedly reported that primary care in America is undergoing major changes driven by many factors including increasingly busy schedules, the popularity of rapid retail and urgent care clinics, consumer use of smartphones and the Internet to self-diagnose, and decreasing numbers of new doctors choosing primary care as a career path. 

Writing in Stat, two physicians who had just completed internal medicine residencies, explained their own decisions to leave primary care. In their article, titled, “We were inspired to become primary care physicians. Now we’re reconsidering a field in crisis,” Richard Joseph, MD, and Sohan Japa, MD, cited factors that include long hours, low compensation in comparison with specialty care, and deficiencies in primary care training. At the time of their writing they were senior residents in primary care-internal medicine at Brigham and Women’s Hospital in Boston.

They also pointed to a decline in office visits to primary care doctors. “Patients are increasingly choosing urgent care centers, smartphone apps, telemedicine, and workplace and retail clinics that are often staffed by nurse practitioners and physician assistants for their immediate health needs,” they wrote.

One solution to declining populations of primary care physicians is a smartphone app created by Seattle-based 98point6. The service involves “providing virtual text-based primary care across the entire country, 24/7 of everyday,” explained Brad Younggren, MD, an emergency physician and Chief Medical Officer at 98point6, in a YouTube interview. “It’s text-based delivery of care overlaid with an AI platform on top of it.”

The service launched on May 1, 2018, in 10 states and is now available nationwide, according to press releases. 98point6 offers the service through individual subscriptions or through deals with employers, health plans, health systems, and other provider organizations. The personal plan costs $20 for the first year and $120 for the second, plus $1 per “visit.”

Here’s how it works:

  • Subscribers use text messaging to interact with an “automated assistant” that incorporates artificial intelligence. While messaging, they can describe symptoms or ask questions about medical topics.

“After the automated assistant has gathered as many questions as it deems necessary, it hands [the information] off to a physician,” Younggren said. In most cases, all communication is via text messaging. However, the doctor may ask the subscriber to send a photo or participate in a video meeting.

  • The doctor then makes a diagnosis and treatment plan. Prescriptions can be sent to a local pharmacy and the subscriber can be referred to a clinical laboratory for tests. LabCorp or Quest Diagnostics are preferred providers, but subscribers can choose to have orders sent to independent labs as well, states the company’s website.

Younggren claims the company’s physicians can resolve more than 90% of the cases they encounter. If, however, they can’t resolve a case, they can refer the patient to a local physician. And because most of 98point6’s interactions with subscribers are text-based, that messaging serves as reference documentation for other doctors, he said.

“We’ve set out to dramatically augment the primary-care physician with deep technology by delivering an on-demand primary-care experience,” Robbie Cape (above), CEO and co-founder of 98point6, told Modern Healthcare. (Photo copyright: Seattle Business Magazine.)

The 98point6 physicians are full-time employees and work with the company’s technologists to improve the AI’s capabilities, Younggren said. The company claims its doctors can diagnose and treat more than 400 conditions, including: allergies, asthma, skin problems, coughs, flu, diabetes, high blood pressure, and infections. For medical emergencies, subscribers are advised to seek emergency help locally.

98point6 also can function as a front end for interacting with patients in health systems that have their own primary-care doctors, Younggren said. The company’s health system clients “don’t actually have a good digital primary care front end to deliver care,” he said. “So, we can essentially give them that, and then we can also get some detailed understanding of how to coordinate care within the health system to drive patients to the care that they need.” For example, this can include directing the patient to an appropriate sub-specialist.

Leveraging Patient Data to Answer Health Questions

K Health in New York City offers a similar service based on its own AI-enabled smartphone app. The app incorporates data gleaned from the records of more than two million anonymous patients in Israel over the past 20 years, explained company co-founder Ran Shaul, co-founder and Chief Product Officer, in a blog post.

The software asks users about their “chief complaint” and then compares the answers with data from similar cases. “We call this group your ‘People Like Me’ cohort,” Shaul wrote. “It shows you how doctors diagnosed those people and all the ways they were treated.”

The K Health app is free, but for a fee ranging from $14 for a one-time visit to $39 for an annual subscription, users can text with doctors, the company’s website states.

Unlike 98point6, K Health’s doctors are employed by “affiliated physician-owned professional corporations,” the company says, not K Health itself.

“The doctor you chat with will discuss a recommended treatment plan that may include a physical exam, lab tests, or radiology scans,” states K Health’s website. “They may send you directly for some of these tests, but others will require you to visit a local doctor.”

These are just the latest examples of new technologies and services devised to help patients receive primary care. How a patient who uses a smartphone app gets the necessary clinical laboratory tests performed is a question yet to be answered.

Clinical laboratory leaders will want to watch this shift in the delivery of primary care and look for opportunities to serve consumers who are getting primary care from nontraditional sources.

—Stephen Beale

Related Information:

Bringing Primary Care to Smartphones

We Were Inspired to Become Primary Care Physicians. Now We’re Reconsidering A Field in Crisis

How K Delivers Free Personalized Healthcare Information

Robbie Cape Wants Everyone to Have Access to Affordable Primary Care

98point6 Inc.’s Hot Health Care App Is Attracting Investors

Consumer Trend to Use Walk-In and Urgent Care Clinics Instead of Traditional Primary Care Offices Could Impact Clinical Laboratory Test Ordering/Revenue

JAMA Study Shows American’s with Primary Care Physicians Receive More High-Value Care, Even as Millennials Reject Traditional Healthcare Settings

As Primary Care Providers and Health Insurers Embrace Telehealth, How Will Clinical Laboratories Provide Medical Lab Testing Services?

Recent Study Looks at How Consumers Use Wearables That Generate Biometric data and Whether Such Data Might Be Valuable for Physicians and Medical Laboratories

Precision medicine programs can benefit from wearable usage data; however, little information has been collected on personalities and behaviors of the device users

Wearables medical devices have the potential to monitor some of the same biomarkers used in medical laboratory tests today. In addition, these mobile technologies can make it possible for clinical laboratories to monitor patients in real time, as well as allow labs to incorporate such into a patient’s historical record of lab test results.

The trend toward personalized medicine (aka, Precision Medicine) is increasing, with many payment programs based on it. Thus, monitoring and correcting activities that cause chronic disease, or work against treatments, is becoming standard procedure for forward-thinking, technically proficient doctors and hospitals. But are patients onboard with all of it?

Activity Trackers for Monitoring Patient Behavior

With the popularity of activity trackers on the rise, researchers are examining their usage patterns to determine how the devices are being utilized, their target market, and ways to encourage sustained use of the gadgets.

A recent article published in Annals of Internal Medicine provided insight regarding who is using this type of wearable device, how activity trackers are being employed, and the length of time consumers will maintain their usage.

The research was spearheaded by Mitesh Patel, MD, Assistant Professor of Medicine and Health Care Management, Perelman School of Medicine and the Wharton School, University of Pennsylvania. He believes this is the largest study of its kind to evaluate the usage of wearable fitness trackers.

“Many people are excited by the potential of using activity trackers to monitor healthy behaviors, but there is very little evidence on who is using them and whether or not use is sustained over time,” Patel stated in a Penn Medicine news release. “We found that, though use grew over time, it really varied depending on individual characteristics like age and income. We also found that once someone started using an activity tracker, sustained use at six months was high at 80%.”

Patel is also Director of the Penn Medicine Nudge Unit, a behavioral design team that is studying the impact that nudges or small interventions may have on healthcare. The team is examining ways in which nudges can influence choices, and also direct medical professionals and patients toward optimal decisions to improve healthcare delivery and results. (Photo copyright: University of Pennsylvania.)

Gaming the Study Improves Usage of Test Devices

To perform the study, 4.4 million members of a national wellness program were invited to take part in data collection. Approximately 55,000 of those individuals actually participated in the study, which involved downloading an app to record pertinent information. Researchers tracked and interpreted the data during a two-year period in 2014 and 2015.

The information analyzed included:

  • When participants initially activated their tracker;
  • How often the device was utilized;
  • The average number of steps taken per day; and,
  • Sociodemographic characteristics.

The results of the study were not entirely unexpected, but there were surprises:

  • 80% of the people who initially activated the devices were still using them after six months;
  • Only 0.2% of the invited individuals used the devices in the first year;
  • However, that number increased to 1.2% during the second year.

The usage of wearable activity trackers was nearly double among younger people than it was for older individuals. In addition, people from households with an annual income of less than $50,000 used the gadgets at lower rates than those at higher income levels.

A mere 0.1% of the potential participants were over 65-years old. However, 90% of individuals in this age group were still using the devices six months after initial activation.

The authors of the study stated that adding game elements, such as points, levels, badges and financial incentives may have played a role in the sustained use of the activity trackers.

Gamification and financial incentives are commonly used within wellness programs, but their impact has not been well studied,” Patel stated in the news release. “Our findings provide initial evidence suggesting that these types of engagement strategies may show promise for keeping sustained use high. However, more studies are needed to determine the best way to combine these types of engagement strategies with activity trackers to improve health outcomes.”

Most Commonly Used Mobile Activity Tracking Devices

There were 60 different types of wearable activity trackers that could be used by participants for the study. Seventy-six percent of those participants elected to use the FitBit activity tracker. This mobile healthcare device is worn on the wrist like a watch. It monitors activity, exercise, food, weight, and sleep to provide consumers with real-time data about their activities.

The data collected by the device is sent automatically and wirelessly to the user’s phone or computer. Individuals then can use the FitBit dashboard to view their progress through online charts and graphs. The dashboard also offers progress notifications to the consumer and gives achievement badges when established goals have been reached.

The second most common activity trackers used were Apple devices, such as Apple Watches, which were chosen by 9% of the participants.

Biometric data on patients’ behavior and activities that is collected and transmitted from mobile devices has swiftly become critical data doctors use in precision medicine diagnoses and treatments. Clinical laboratories will likely be including biomarker data taken by these devices in their testing and procedures in the future. The only question is how quickly the data generated by such devices becomes acceptable to add to a patient’s permanent health record.

—JP Schlingman

Related Information:

New Wellness Study Shows Just How Sticky Wearables Can Be, Even Among Seniors

Penn Study Shows 80% of Activity Tracker Users Stick with the Devices for at Least Six Months

Game Time: To Increase Exercise, Study Shows Gaming Strategies and a Buddy Are Key

When Push Comes to Nudge

Improvements to Fitness Wearables Help Stream Data from Consumers’ Homes to EHRs and Clinical Pathology Laboratories

Apple May Be Developing Mobile Device Technology to Monitor User’s Health and Transmit Data in Real Time

;