News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Recent Separate Business Transactions by Fujifilm and GE Healthcare Suggest Bullish Outlook for Faster Adoption of Digital Pathology

Fujifilm acquired Inspirata’s Dynamyx digital pathology technology and business while GE Healthcare announced a partnership with Tribun Health in Europe

Clinical pathology laboratories, especially in the US, have been slow to adopt digital imaging systems. But recent industry deals suggest that the market may soon heat up, at least in the eyes of vendors. These collaborators may hope that, by integrating diagnostic data, the accuracy and productivity of anatomic pathologists will improve while also shortening the time to diagnosis.

In a December press release, Tokyo-based Fujifilm announced it acquired the global digital pathology business of Inspirata, including its Dynamyx digital pathology system. Inspirata is a Tampa-based cancer informatics company.

In the press release, Fujifilm stated that 85% of US healthcare organizations use analog systems for pathology. That compares with 86% in Europe and 90% in Asia, the company stated.

“Acquiring Inspirata’s digital pathology business allows Fujifilm to be an even stronger healthcare partner—bridging a technological gap between pathology, radiology, and oncology to facilitate a more collaborative approach to care delivery across the enterprise,” said Fujifilm CEO and president Teiichi Goto in the press release.

The press release cited data from Signify Research, a healthcare technology marketing data firm that is predicting the global market for digital pathology systems would double from $320 million in 2021 to $640 million by 2025.

Fujifilm previously had a deal with Inspirata to sell the Dynamyx system exclusively in the UK, Italy, Spain, Portugal, Belgium, the Netherlands, and Luxembourg, an August press release noted.

Henry Izawa

“A $320 million global industry in 2021 projected to reach $640 million by 2025, the rising number of cancer cases and the demonstrated benefits of digital pathology are fueling significant demand and market growth in the hospital and pharmaceutical industries,” said Henry Izawa (above), president and CEO, Fujifilm Healthcare Americas Corporation, in a press release. “These evolving clinical needs fuel Fujifilm’s investment and innovation in the digital revolution, and we look forward to introducing Dynamyx and its host of unique features and benefits to our Synapse customers and prospects as we strive to enable more efficient medical diagnosis and high-quality care.” (Photo copyright: LinkedIn.)

GE Healthcare Partners with Tribun Health

The Fujifilm acquisition followed an October 18 announcement of a collaboration between GE Healthcare and digital pathology company Tribun Health in Europe to provide an interface between the latter’s digital pathology software and GE Healthcare’s Edison Datalogue image-management system.

In announcing their new collaboration, GE Healthcare and Tribun Health said the integration of their systems—Edison Datalogue and the Tribun Health suite—would foster collaboration between pathologists and clinicians by providing a consolidated location for imaging records. This capability is especially important in oncology, they said.

“The oncology care pathway is one of the most complex with multiple steps involving a variety of specialists, complex tools, frequent decisions, and large data sets,” said GE Healthcare CEO of Enterprise Digital Solutions Nalinikanth Gollagunta in a GE press release. “With this digital pathology collaboration, we continue our journey towards simplifying the oncology care pathway with improved data management, the digitization of pathology, and streamlined data access.”

Tribun Health, based in Paris, France, offers a digital pathology platform that incorporates a camera system, artificial intelligence (AI)-based analysis, remote collaboration, and storage management, plus integration with third-party automation apps.

GE Healthcare claims that Edison Datalogue has the largest share of the Vendor Neutral Archive (VNA) market. That term refers to image archiving systems that use standard formats and interfaces instead of proprietary formats. They are an alternative to the more widely used Picture Archiving and Communications Systems (PACS) used in medical imaging.

The collaboration between the companies “is probably a strategic move to position GE as an integrator of imaging data and digital pathology data in oncology,” said Robert Michel Editor-in-Chief of Dark Daily and its sister publication The Dark Report.

GE’s History with Dynamyx

This is not GE Healthcare’s first foray into digital pathology. In fact, the company had a major hand in launching the very Dynamyx system that Fujifilm recently acquired.

Dynamyx was originally developed by digital pathology technology company Omnyx, LLC, which was a joint venture formed in 2008 between GE Healthcare and the University of Pittsburgh Medical Center (UPMC).

In “GE Healthcare Sells Omnyx to Inspirata,” The Dark Report interviewed Inspirata CEO Satish Sanan who at that time said the acquisition would allow his company to offer “a fully integrated, end-to-end digital pathology solution” in Canada and Europe. But GE Healthcare chose to end the partnership in 2016, citing regulatory uncertainty and variable global demand. Two years later, GE sold Omnyx to Inspirata.

GE Healthcare’s new collaboration with Tribun Health shows that the company “still recognizes the value of the pathology data in cancer diagnosis and wants to be in a position to manage that digital pathology data,” Michel said.

Fujifilm’s Plans

Fujifilm said it will incorporate Dynamyx into its Synapse Enterprise Imaging suite, which includes VNA, Radiology PACS, and Cardiology PACS. “Future releases of Dynamyx will also create opportunities for Fujifilm to support pharmaceutical and contract research organizations with toxicity testing data management for drug development,” the company stated in the press release.

US-based subsidiary Fujifilm Healthcare Americas Corporation will handle future development of the Dynamyx system. In the US, the system is currently cleared for the US Food and Drug Administration (FDA) for use with Leica’s Aperio AT2 DX scanner and Philips’ Ultra Fast Scanner.

With its recent moves into digital pathology, Fujifilm will be taking on major competitors including Philips, Danaher, and Roche, MedTech Dive reported.

Stephen Beale

Related Information:

Fujifilm Announces Asset Purchase Agreement with Inspirata, Inc. to Acquire the Company’s Digital Pathology Business

Fujifilm Agrees to Buy Inspirata’s Dynamyx in Challenge to Philips for Digital Pathology Market

GE Healthcare Announces Collaboration to Advance Digital Transformation of Pathology

Leica, Philips Come Out on Top in Digital Pathology Systems Market, KLAS Finds

GE Healthcare Sells Omnyx to Inspirata

United Kingdom’s National Health Service Now Offers Liquid Biopsy Tests to Certain Cancer Patients as a Complement to Anatomic Pathology Testing

Decision is part of UK effort to diagnose 75% of all cancers at stage I or stage II by 2028 and demonstrates to pathologists that the technology used in liquid biopsy tests is improving at a fast pace

Pathologists and medical laboratory scientists know that when it comes to liquid biopsy tests to detect cancer, there is plenty of both hope and hype. Nevertheless, following a successful pilot study at the Christie NHS Foundation Trust in Manchester, England, which ran from 2015-2021, the UK’s National Health Service (NHS) is pushing forward with the use of liquid biopsy tests for certain cancer patients, The Guardian reported.

NHS’ decision to roll out the widespread use of liquid biopsies—a screening tool used to search for cancer cells or pieces of DNA from tumor cells in a blood sample—across the UK is a hopeful sign that ongoing improvements in this diagnostic technology are reaching a point where it may be consistently reliable when used in clinical settings.

The national program provides personalized drug therapies based on the genetic markers found in the blood tests of cancer patients who have solid tumors and are otherwise out of treatment options. The liquid biopsy creates, in essence, a match-making service for patients and clinical trials.

Liquid Biopsy Genetic Testing for Cancer Patients

“The learnings from our original ‘Target’ study in Manchester were that genetic testing needs to be done on a large scale to identify rare genetic mutations and that broader access to medicines through clinical trials being undertaken across the country rather than just one site are required,” Matthew Krebs, PhD, Clinical Senior Lecturer in Experimental Cancer Medicine at the University of Manchester, told The Guardian.

Krebs, an honorary consultant in medical oncology at the Christie NHS Foundation Trust, led the Target National pilot study.

“This study will allow thousands of cancer patients in the UK to access genetic testing via a liquid biopsy. This will enable us to identify rare genetic mutations that in some patients could mean access to life-changing experimental medicines that can provide great treatment responses, where there are otherwise limited or no other treatment options available.”

Detecting cancers at earlier stages of disease—when treatment is more likely to result in improved survival—has become a strategic cancer planning priority in the UK, theBMJ noted.

“The NHS is committed to diagnosing 75% of all cancers at stage I or II by 2028, from around 50% currently,” the BMJ wrote. “Achieving such progress in less than a decade would be highly ambitious, even without disruption caused by the COVID-19 pandemic. In this context, considerable hope has been expressed that blood tests for circulating free DNA—sometimes known as liquid biopsy—could help achieve earlier detection of cancers.”

The Guardian noted that the UK’s initiative will use a liquid biopsy test made by Swiss-healthcare giant Roche.

 Matthew Krebs, PhD
“We can’t guarantee that we will find a fault in the genetic code of every cancer patient we recruit, or that if we do, there will be a suitable drug trial for them,” Matthew Krebs, PhD (above), lead scientist of the NHS’ Target National pilot study, told The Guardian. “However, as we learn more about the genetics of cancer in this study, it will help doctors and scientists develop new treatments to help people in the future. Ultimately, we hope liquid biopsy testing will be adopted into routine NHS care, but we need studies such as this to show the benefit of the test on a large scale and provide the evidence that patients can benefit from being matched to targeted medicines on the basis of the blood test.” (Photo copyright: Cancer Research UK Manchester Centre.)

Liquid Biopsies: Hope or Hype?

In 2020, the US Food and Drug Administration (FDA) expanded its clearance for two liquid biopsy tests in this country—Guardant Health’s Guardant360 CDx and Foundation Medicine’s FoundationOne Liquid CDx—for use as companion diagnostic tests and for general tumor profiling for certain non-small cell lung, prostate, breast, and ovarian cancers, according to an NIH National Cancer Institute news release.

In her article “The Promise of Liquid Biopsies for Cancer Diagnosis,” published in the American Journal of Managed Care (AJMC) Evidence-based Oncology, serial healthcare entrepreneur and faculty lecturer at Harvard Medical School Liz Kwo, MD, detailed the optimism surrounding the “revolutionary screening tool,” including its potential for:

  • providing earlier diagnose of cancer,
  • customizing treatment through genotyping,
  • identifying mechanisms of resistance to therapies,
  • measuring remaining disease after treatment,
  • assessing cancer relapse or resistance to treatment, and
  • eliminating risk surrounding traditional biopsies.

The AJMC article estimated the liquid biopsy market will be valued at $6 billion by 2030. However, Kwo also noted that clinical adoption of liquid biopsies in the US continues to face challenges.

In a STAT editorial, titled, “Liquid Biopsy: Misplaced Faith in Early Cancer Detection?H. Gilbert Welch, MD, a Harvard University academic physician and cancer researcher, voiced concerns about widespread use of liquid biopsies for cancer screening.

Welch compared the investor hype surrounding liquid biopsies to that of the now-defunct blood testing company Theranos, which lured high-profile investors to pour millions into its unproven diagnostic technology.

“Effective cancer screening requires more than early detection. It also requires that starting therapy earlier helps people live to older ages than they would if they started treatment later,” he wrote. “If that doesn’t happen, liquid biopsies will only lead to people living longer with the knowledge they have a potentially incurable disease without extending their lives. These people would be subjected to cancer therapies and their toxicities earlier, but at a time when they would otherwise be experiencing no cancer-related signs or symptoms.”

And so, while there’s much excitement about the possibility of a minimally invasive way to detect cancer, anatomic pathology groups and clinical laboratories will have to wait and see if the hype and hope surrounding liquid biopsies is substantiated by further research.

Andrea Downing Peck

Related Information:

NHS Cancer Patients to Get Pioneering Genetic Test to Find Best Treatments

‘Liquid Biopsy’ for Cancer Screening

The Promise of Liquid Biopsies for Cancer Diagnosis

Cancer ‘Liquid Biopsy’ Blood Test Gets Expanded FDA Approval

Liquid Biopsy: Misplaced Faith in Early Cancer Detection?

Swiss Researchers Develop a Multi-omic Tumor Profiler to Inform Clinical Decision Support and Guide Precision Medicine Therapy for Cancer Patients

New biomarkers for cancer therapies derived from the research could usher in superior clinical laboratory diagnostics that identify a patient’s suitability for personalized drug therapies and treatments

In another advancement toward accurate precision medicine, Swiss researchers from the University Hospitals of Zurich and Basel, ETH Zurich, the University of Zurich, and pharmaceutical company Roche have developed a multi-omic tumor profiling technology for cancer patients they hope will isolate biomarkers that allow doctors to tailor drug therapies to individual patients’ medical needs.

Once approved for clinical use, not only would these biomarkers become targets for specific cancer therapies, they also would require development of new diagnostic tests that anatomic pathologists could use to determine whether a biomarker was present in a patient.

If yes, the drug can be administered. If no, the patient is not a candidate for that drug. Thus, this research may produce both diagnostic biomarkers and therapeutic targets.

The researchers published their study in the journal Cancer Cell, titled, “The Tumor Profiler Study: Integrated, Multi-omic, Functional Tumor Profiling for Clinical Decision Support.”

Relevance of In-Depth Tumor Profiling to Support Clinical Decision-Making

In the Swiss “Tumor Profiler” (TuPro) project, the research team is examining the cellular composition and biology of tumors of 240 patients with melanoma, ovarian cancer, and acute myeloid leukemia. Recruitment for the study began in 2018. Today, the melanoma cohort is fully enrolled, and the ovarian cancer and acute myeloid leukemia cohorts are nearing complete enrollment.

“The Tumor Profiler Study is an observational clinical study combining a prospective diagnostic approach to assess the relevance of in-depth tumor profiling to support clinical decision-making (“fast diagnostic loop”) with an exploratory approach to improve the biological understanding of disease (“exploratory science loop”),” the TuPro website states.

Tumor Profiler graphic

The graphic above taken from the Tumor Profiler project paper illustrates how the TuPro study’s workflow entails patient enrollment, sample collection, analysis by different technology platforms, and data integration, creation and discussion of molecular research and summary reports, discussion of treatment options in pre-tumor boards and the final treatment decision in tumor boards. (Photo copyright: Cancer Cell.)

“For this study of melanoma, ovarian carcinoma, and acute myeloid leukemia tumors, in addition to the emerging standard diagnostic approaches of targeted NGS panel sequencing and digital pathology, extensive characterization is performed using the following exploratory technologies: single-cell genomics and transcriptomics, proteotyping, CyTOF, imaging CyTOF, pharmacoscopy, and 4i drug response profiling (4i DRP),” the TuPro website explains.

In their published paper, the Swiss researchers say these three cancers were selected for the study “based on the potential clinical benefit and availability of sufficient tumor material for simultaneous analysis across all technologies.”

Gunnar Rätsch PhD

According to a University Hospital Basel blog post, the TuPro project examination of each cancer tumor goes “much further than the limited use of molecular biological methods” used by leading hospitals. “This results in huge amounts of data per patient, which we process and analyze using data science methods,” stated data scientist Gunnar Rätsch, PhD (above), Professor for Biomedical Informatics at ETH Zurich and one of the study’s corresponding authors, in the blog post. This research could lead to new precision medicine biomarkers for clinical laboratory cancer diagnostics and therapies. (Photo copyright: ETH Zurich.)

The TuPro Project’s findings are available to doctors who analyze them at interdisciplinary tumor board meetings and generate treatment options, creating a “fast diagnostic loop” with an estimated four-week turnaround time from surgery to tumor board. “This approach has the potential to alter current diagnostics and paves the way for the translation of comprehensive molecular profiling into clinical decision-making,” the study’s authors wrote in Cancer Cell.

Could Oncologists Be Making Better Precision Medicine Decisions?

In its writeup on the TuPro Project’s research, Precision Oncology News concluded that the Swiss study “is rooted in the researchers’ notion that oncologists are not making the best personalized treatment decisions for patients by relying just on targeted DNA profiling using next-generation sequencing and digital pathology-based tests.

“The researchers within the TuPro consortium hypothesized that integrating a more comprehensive suite of omics tests could lead to a more complete understanding of patients’ tumors, including providing insights into the tumor microenvironment, heterogeneity, and ex vivo responses to certain drugs. This, in turn, could help inform the best course of treatment,” Precision Oncology News added.

“With the Tumor Profiler study, we want to show that the widespread use of molecular biological methods in cancer medicine is not only feasible, but also has specific clinical benefits,” said TuPro consortium member Viola Heinzelmann-Schwarz, MD, Head of Gynecological Oncology at University Hospital Basel, in an ET Zurich news release.

New Precision Medicine Biomarkers from TuPro’s Molecular Analysis

Researchers in the study also are investigating whether and what influence the molecular analysis had on doctors’ therapy decisions.

The University Hospital Basal blog notes the long-term benefits of the Tumor Profiler approach is to expand the personalized-medicine therapy options for patients, including determining whether patients would benefit in certain cases “if they were not treated with drugs from standard therapy, but with drugs that have been approved for other types of cancer.”

Anatomic pathologists and clinical laboratory scientists will want to take note of the TuPro project’s ultimate success or failure, since it could usher in changes in cancer treatments and bring about the need for new diagnostic tests for cancer biomarkers.

—Andrea Downing Peck

Related Information

The Tumor Profiler Study: Integrated, Multi-omic, Functional Tumor Profiling for Clinical Decision Support

The Tumor Profiler Study: Integrated, Multi-omic, Functional Tumor Profiling for Clinical Decision Support

Detailed Profile of Tumors

Swiss Study to Prospectively Assess Value of Multi-Omic, Functional Tumor Profiling

Roche CEO Severin Schwan Questions the Ethics of Certain Companies Making COVID-19 Antibody Tests and Calls Some of These Clinical Laboratory Tests a ‘Disaster’

Schwan’s concerns about inaccurate or unreliable COVID-19 serology tests were supported when the FDA issued more restrictive rules for these medical laboratory tests on May 4

Last month, Roche Group CEO Severin Schwan characterized some COVID-19 antibody tests as a “disaster” and questioned the ethics of some manufacturers of these tests.

During a conference call with investors about the company’s first-quarter results, Schwan said of the recently-launched COVID-19 antibody assays, “These tests are not worth anything, or have very little use,” according to reporting from Reuters and other publications. “Some of these companies, I tell you, this is ethically very questionable to get out with this stuff.”

On May 3, Roche announced that its own Elecsys Anti-SARS-CoV-2 antibody test for SARS-CoV-2, the coronavirus that causes the COVID-19 illness, had obtained an emergency use authorization (EUA) from the federal Food and Drug Administration (FDA). In its news release, Roche stated that “the serology test has a specificity greater than 99.8% and sensitivity of 100% (14 days post-PCR confirmation).”

In a separate interview with Bloomberg, Schwan said about antibody testing, “It is very important to pick the right test and then to validate those tests with enough patients.” He then returned to the issue of poor quality in some antibody tests for the SARS-CoV-2 virus, saying, “Unfortunately, there are a number of tests already out there in the market which are not reliable simply because they haven’t been tested sufficiently.”

In reference to the initial release of serological COVID-19 antibody tests, CEO Severin Schwan (above) said during Roche Holding’s first quarter earnings call that, “It’s a disaster. These tests are not worth anything, or have very little use,” reported CNBC. He added, “This is really what matters. Every kind of amateur could produce an antibody test. The two of us could do it overnight in the garage. That’s not the problem. The question is, does it really work? And for that, you have to do testing and validation.” (Photo copyright: Reuters/Arnd Wiegmann.)

A ‘Wild West’ of Unregulated Assays

Prior to issuing tougher rules for how a manufacturer can market a COVID-19 serological test, the FDA had listed about 200 serological tests designed to identify antibodies produced by the human immune system in response to a SARS-CoV-2 infection. This is the process of seroconversion, which is the development of detectable antibodies in a patient’s blood against a pathogen. Detection of IgG antibodies indicates exposure to SARS-CoV-2, according to ARUP Laboratories.

Public health experts have raised questions about the proliferation of such tests for the new coronavirus. Under the FDA’s previous March 16 rules—which were more relaxed than those FDA applied when granting EUAs—the agency was swamped with requests to review more than 200 COVID-19 antibody tests. The looser regulations resulted in nearly no oversight of those tests, reported the Associated Press (AP).

In comments to the AP, Eric Blank, DrPH, Senior Director of Public Health Systems and Programs for the Association for Public Health Laboratories (APHL), said, “Right now it’s a wild west show out there. It really has created a mess that’s going to take a while to clean up.”

“In the meantime,” Blank added, “you’ve got a lot of companies marketing a lot of stuff and nobody has any idea of how good it is.” Blank confirmed to Dark Daily that he made these comments and stands by them.

Calls for Closer Scrutiny of Serological Antibody Tests

In response to the FDA’s March 16 rules for COVID-19 serology tests, APHL requested the federal agency to review its looser approach to reviewing these tests. The impact of the FDA’s much tougher COVID-19 serological testing rules released on May 4 was immediate.

In a press release issued on May 2, the FDA said, “to date, the FDA has authorized 105 tests under EUAs, which include 92 molecular tests, 12 antibody tests, and one antigen test.”

Clinical laboratories in the United States still face difficult challenges if they plan to launch their own COVID-19 serology testing programs. They must select one or more tests from among the antibody and antigen tests that have an FDA EUA. However, data for each of these tests is not as comprehensive as is the data for diagnostic test kits reviewed by the FDA and cleared for market under the pre-market approval process.

To help clinical lab professionals as they evaluate different COVID-19 serology tests to buy, validate, and perform in their labs, Dark Daily and its sister publication, The Dark Report, produced a free webinar on May 21, titled “Quality Issues Your Clinical Laboratory Should Know Before You Buy or Select COVID-19 Serology Tests.”

This webinar was conducted by James O. Westgard, PhD, and Sten Westgard of Westgard QC, Inc., and the full program is available for free download by clicking here, or by placing this URL in your web browser: https://www.darkdaily.com/webinar/quality-issues-your-clinical-laboratory-should-know-before-you-buy-or-select-covid-19-serology-tests/.

In the webinar recording, the Westgards provide a detailed overview of what elements are required for a clinical lab to have confidence that its COVID-19 serology testing program is producing accurate, reliable results. They explain that labs must understand the unique aspects of the populations they are testing in their communities. All of these factors can then be used by labs to evaluate the different COVID-19 serology tests available for them to purchase, and to select the test that best fits their lab’s capabilities and the characteristics of the patient population that will be tested.

Another important requirement for clinical laboratories to understand is the list of steps necessary to bring up a COVID-19 serological testing program. That starts with validating the test, then bringing it into daily production. As that happens, issues associated with quality control (QC), proficiency testing (PT), and regulatory compliance take center stage, so that the clinical lab has high confidence in the accuracy and reproducibility of the COVID-19 serology test results they are using in patient care or in support of employers who are screening employees for COVID-19.

To address what labs should do after they purchase a COVID-19 serology test and prepare for validation and production, Dark Daily and The Dark Report have arranged for James O. Westgard, PhD, and Sten Westgard to conduct a second free webinar on June 11, 2020, at 1:00 PM EDT. This webinar is titled “Achieving High Confidence Levels in the Quality and Accuracy of Your Clinical Lab’s Chosen COVID-19 Serology Tests, featuring James Westgard, PhD.”

To register for the June 11 webinar, click here, or place this URL in your web browser: https://www.darkdaily.com/webinar/achieving-high-confidence-levels-in-the-quality-and-accuracy-of-your-clinical-labs-chosen-covid-19-serology-tests/.

New COVID-19 Intelligence from Dark Daily

Announcing Dark Daily’s new COVID-19 STAT Intelligence Briefings! This free service for clinical laboratories, anatomic pathology groups, and diagnostics companies features:

  • daily breaking news,
  • business intelligence, and
  • innovations that clinical labs are using to respond to the COVID-19 pandemic.

This critical information includes effective ways labs can restore their cash flow to pre-pandemic levels and get test claims paid by government and private payers.

One popular feature is the COVID-19 Live! conference calls that happen every Tuesday and Thursday for 30 minutes at 1 PM, EDT. Visit the COVID-19 STAT Intelligence Briefings website and join us for the live calls.

—Joseph Burns

Related Information:

Roche CEO Calls Some COVID-19 Antibody Tests a ‘Disaster’ and Questions Makers’ EthicReuters

Roche CEO Blasts Faulty Coronavirus Tests While Touting Own Product

Roche CEO Calls Some Covid-19 Antibody Tests a ‘Disaster’ and Questions Makers’ EthicsCNBC

Coronavirus Antibody Blood Tests Arrive in ‘Wild West’ Marketplace

The ‘Wild West’ for Antibody Tests

Everything We Know About Coronavirus Immunity and Antibodies—and Plenty We Still Don’t

The Next Frontier in Coronavirus Testing: Identifying the Full Scope of the Pandemic, Not Just Individual Infections

Advances in Gene Sequencing Technology Enable Scientists to Respond to the Novel Coronavirus Outbreak in Record Time with Medical Lab Tests, Therapies

Scientist described the speed at which SARS-CoV-2’s full sequence of genetic material was made public as ‘unprecedented’ and medical labs are rushing to validate tests for this new disease

In the United States, headlines scream about the lack of testing for the novel Coronavirus disease 2019 (COVID-19). News reporters ask daily why it is taking so long for the US healthcare system to begin testing large numbers of patients for SARS-CoV-2, the virus that causes COVID-19. Yet, pathologists and clinical laboratory scientists know that new technologies for gene sequencing and diagnostic testing are helping public health laboratories bring up tests for a previously unknown new disease faster than at any time in the past.

At the center of the effort to develop accurate new assays to detect SARS-CoV-2 and help diagnose cases of the COVID-19 disease are medical laboratory scientists working in public health laboratories, in academic medical centers, and in research labs across the United States. Their collective efforts are producing results on a faster timeline than in any previous discovery of a new infectious disease.

For example, during the severe acute respiratory syndrome (SARS) outbreak in 2003, five months passed between the first recognized case of the disease in China and when a team of Canadian scientists cracked the genetic code of the virus, which was needed to definitively diagnose SARS patients, ABC News reported. 

In contrast, Chinese scientists sequenced this year’s coronavirus (originally named 2019-nCoV) and made it available on Jan. 10, 2020, just weeks after public health officials in Wuhan, China, reported the first case of pneumonia from the unknown virus to the World Health Organization (WHO), STAT reported.

Increases in sequencing speed enabled biotechnology companies to quickly create synthetic copies of the virus needed for research. Roughly two weeks later, scientists completed sequencing nearly two dozen more samples from different patients diagnosed with COVID-19.

Molecular biologist Kristian Andersen, PhD (above right, with graduate students who helped sequence the Zika virus), an Associate Professor in the Department of Immunology and Microbiology at Scripps Research in California and Director of Infectious Disease Genomics at Scripps’ Translational Research Institute, worked on the team that sequenced the Ebola genome during the 2014 outbreak. He told STAT that the pace of sequencing of the SARS-CoV-2 coronavirus is “unprecedented.”  (Photo copyright: Scripps Research.)

Lower Sequencing Costs Speed COVID-19 Diagnostics Research

Additionally, a significant decline in the cost of genetic synthesis is playing an equally important role in helping scientists slow the spread of COVID-19. In its coverage of the SARS-CoV-2 outbreak, The Verge noted that two decades ago “it cost $10 to create a synthetic copy of one single nucleotide, the building block of genetic material. Now, it’s under 10 cents.” Since the coronavirus gene is about 30,000 nucleotides long, that price reduction is significant.

Faster sequencing and cheaper access to synthetic copies is contributing to the development of diagnostic tests for COVID-19, an important step in slowing the disease.

On Feb. 4, 2020, the US Food and Drug Administration (FDA) issued its first emergency use authorization (EUA) for a diagnostic test for the coronavirus called 2019-nCoV Real-Time RT-PCR Diagnostic Panel. The test was developed by the US Centers for Disease Control and Prevention (CDC).

“This continues to be an evolving situation and the ability to distribute this diagnostic test to qualified medical laboratories is a critical step forward in protecting the public health,” FDA Commissioner Stephen M. Hahn, MD, said in an FDA statement.

However, the Washington Post soon reported that the government-created coronavirus test kits contained a “faulty component,” which as of February 25 had limited testing in the US to only 426 people, not including passengers who returned to the US on evacuation flights. The Post noted that the nation’s public health laboratories took “the unusual step of appealing to the FDA for permission to develop and use their own [laboratory-developed] tests” for the coronavirus.

“This is an extraordinary request, but this is an extraordinary time,” Scott Becker,

Chief Executive of the Association of Public Health Laboratories (APHL), told the Post.

Parallel efforts to develop and validate tests for COVID-19 are happening at the clinical laboratories of academic medical centers and in a number of commercial laboratory companies. As these labs show their tests meet FDA criteria, they become available for use by physicians and other healthcare providers.

Dark Daily’s sister publication, The Dark Report just published an intelligence briefing about the urgent effort at the clinical laboratory of Northwell Health to develop both a manual COVID-19 assay and a test that can be run on the automated analyzers already in use in the labs at Northwell Health’s 23 hospitals. (See TDR, “Northwell Lab Team Validates COVID-19 Test on Fast Timeline,” March 9, 2020.)

Following the FDA’s March 13 EUA for the Thermo Fisher test, Hahn said, “We have been engaging with test developers and encouraging them to come to the FDA and work with us. Since the beginning of this outbreak, more than 80 test developers have sought our assistance with development and validation of tests they plan to bring through the Emergency Use Authorization process. Additionally,” he continued, “more than 30 laboratories have notified us they are testing or intend to begin testing soon under our new policy for laboratory-developed tests for this emergency. The number of products in the pipeline reflects the significant role diagnostics play in this outbreak and the large number of organizations we are working with to bring tests to market.”

So far, the FDA has issued a total of seven EUAs:

Pharma Company Uses Sequencing Data to Develop Vaccine in Record Time

Even as clinical laboratories work to develop and validate diagnostic tests for COVID-19, drug manufacturers are moving rapidly to develop a COVID-19 vaccine. In February, Massachusetts-based biotechnology company Moderna Therapeutics (NASDAQ:MRNA) announced it had shipped the first vials of its potential coronavirus vaccine (mRNA-1273) to the National Institute of Allergy and Infectious Disease (NIAID) for use in a Phase One clinical trial.

“The collaboration across Moderna, with NIAID, and with CEPI [Coalition for Epidemic Preparedness Innovations] has allowed us to deliver a clinical batch in 42 days from sequence identification,” Juan Andres, Chief Technical Operations and Quality Officer at Moderna, stated in a news release.

The Wall Street Journal (WSJ) reported that NIAID expects to start a clinical trial of about 20 to 25 healthy volunteers by the end of April, with results available as early as July or August.

“Going into a Phase One trial within three months of getting the sequence is unquestionably the world indoor record,” NIAID Director Anthony Fauci, MD, told the WSJ. “Nothing has ever gone that fast.”

There are no guarantees that Moderna’s coronavirus vaccine will work. Furthermore, it will require further studies and regulatory clearances that could delay widespread distribution until next year.

Nonetheless, Fauci told the WSJ, “The only way you can completely suppress an emerging infectious disease is with a vaccine. If you want to really get it quickly, you’re using technologies that are not as time-honored as the standard, what I call antiquated, way of doing it.”

In many ways, the news media has overlooked all the important differences in how fast useful diagnostic and therapeutic solutions for COVID-19 are moving from research settings into clinical use, when compared to early episodes of the emergence of a new infectious disease, such as SARS in 2003.

The story the American public has yet to learn is how new genetic sequencing technologies, improved diagnostic methods, and enhanced informatics capabilities are being used by researchers, pathologists, and clinical laboratory professionals to understand this new disease and give healthcare professionals the tools they need to diagnose, treat, and monitor patients with COVID-19.

—Andrea Downing Peck

Related Information:

To Fight the Coronavirus, Labs Are Printing Its Genome

DNA Sleuths Read the Coronavirus Genome, Tracing Its Origins and Looking for Dangerous Mutations

FDA Takes Significant Step in Coronavirus Response Efforts, Issues Emergency Use Authorization for the First 2019 Novel Coronavirus Diagnostic

Coronavirus (COVID-19) Update: FDA Issues Emergency Use Authorization to Thermo Fisher

A Faulty CDC Coronavirus Test Delays Monitoring of Disease’s Spread

Moderna Ships mRNA Vaccine Against Novel Coronavirus (mRNA-1273) for Phase 1 Study

Drugmaker Moderna Delivers First Experimental Coronavirus Vaccine for Human Testing

China Detects Large Quantity of Novel Coronavirus at Wuhan Seafood Market

Scientists Claim SARS Breakthrough

Discovery of ‘Hidden’ Outbreak Hints That Zika Virus Can Spread Silently

Research Use Only Real-Time RT-PCR Protocol for Identification of 2019-nCoV

Interim Guidelines for Collecting, Handling, and Testing Clinical Specimens from Persons for Coronavirus Disease 2019 (COVID-19)

Roche’s Cobas SARS-Cov-2 Test to Detect Novel Coronavirus Receives FDA Emergency Use Authorization and Is Available in Markets Accepting the CE Mark

Hologic’s Molecular Test for the Novel Coronavirus, SARS-CoV-2, Receives FDA Emergency Use Authorization

Emergency Use Authorization (EUA) Information and List of All Current EUAs

;