Research Consortium Identifies 188 New CRISPR Gene-Editing Systems, Some More Accurate than CRISPR
New gene-editing systems could provide markedly improved accuracy for DNA and RNA editing leading to new precision medicine tools and genetic therapies
In what may turn out to be a significant development in genetic engineering, researchers from three institutions have identified nearly 200 new systems that can be used for editing genes. It is believed that a number of these new systems can provide comparable or better accuracy when compared to CRISPER (Clustered Regularly Interspaced Short Palindromic Repeats), currently the most-used gene editing method.
CRISPR-Cas9 has been the standard tool for CRISPR gene editing and genetic engineering. However, publication of these new research findings are expected to give scientists better, more precise tools to edit genes. In turn, these developments could lead to new clinical laboratory tests and precision medicine therapies for patients with inherited genetic diseases.
Researchers from Broad Institute, Massachusetts Institute of Technology (MIT), and the federal National Institutes of Health (NIH) have uncovered 188 new CRISPR systems “in their native habitat of bacteria” with some showing superior editing capabilities, New Atlas reported.
“Best known as a powerful gene-editing tool, CRISPR actually comes from an inbuilt defense system found in bacteria and simple microbes called archaea. CRISPR systems include pairs of ‘molecular scissors’ called Cas enzymes, which allow microbes to cut up the DNA of viruses that attack them. CRISPR technology takes advantage of these scissors to cut genes out of DNA and paste new genes in,” according to Live Science.
In its article, New Atlas noted that the researchers looked to bacteria because “In nature, CRISPR is a self-defense tool used by bacteria.” They developed an algorithm—called FLSHclust—to conduct “a deep dive into three databases of bacteria, found in environments as diverse as Antarctic lakes, breweries, and dog saliva.”
The research team published their findings in the journal Science titled, “Uncovering the Functional Diversity of Rare CRISPR-Cas Systems with Deep Terascale Clustering.”
In their paper, the researchers wrote, “We developed fast locality-sensitive hashing–based clustering (FLSHclust), a parallelized, deep clustering algorithm with linearithmic scaling based on locality-sensitive hashing. FLSHclust approaches MMseqs2, a gold-standard quadratic-scaling algorithm, in clustering performance. We applied FLSHclust in a sensitive CRISPR discovery pipeline and identified 188 previously unreported CRISPR-associated systems, including many rare systems.”
“In lab tests [the newfound CRISPR systems] demonstrated a range of functions, and fell into both known and brand new categories,” New Atlas reported.
“Some of these microbial systems were exclusively found in water from coal mines,” Soumya Kannan, PhD (above), a Graduate Fellow at MIT’s Zhang Lab and co-first author of the study, told New Atlas. “If someone hadn’t been interested in that, we may never have seen those systems.” These new gene-editing systems could lead to new clinical laboratory genetic tests and therapeutics for chronic diseases. (Photo copyright: MIT McGovern Institute.)
Deeper Look at Advancement
The CRISPR-Cas9 made a terrific impact when it was announced in 2012, earning a Nobel Prize in Chemistry.
Though CRISPR-Cas9 brought huge benefits to genetic research, the team noted in their Science paper that “existing methods for sequence mining lag behind the exponentially growing databases that now contain billions of proteins, which restricts the discovery of rare protein families and associations.
“We sought to comprehensively enumerate CRISPR-linked gene modules in all existing publicly available sequencing data,” the scientist continued. “Recently, several previously unknown biochemical activities have been linked to programmable nucleic acid recognition by CRISPR systems, including transposition and protease activity. We reasoned that many more diverse enzymatic activities may be associated with CRISPR systems, many of which could be of low abundance in existing [gene] sequence databases.”
Among the previously unknown gene-editing systems the researchers found were some belonging to the Type 1 CRISPR systems class. These “have longer guide RNA sequences than Cas9. They can be directed to their targets more precisely, reducing the risk of off-target edits—one of the main problems with CRISPR gene editing,” New Atlas reported.
“The authors also identified a CRISPR-Cas enzyme, Cas14, which cuts RNA precisely. These discoveries may help to further improve DNA- and RNA-editing technologies, with wide-ranging applications in medicine and biotechnology,” the Science paper noted.
Testing also showed these systems were able to edit human cells, meaning “their size should allow them to be delivered in the same packages currently used for CRISPR-Cas9,” New Atlas added.
Another newfound gene-editing system demonstrated “collateral activity, breaking down nucleic acids after binding to the target, New Atlas reported. SHERLOCK, a tool used to diagnose single samples of RNA or DNA to diagnose disease, previously utilized this system.
Additionally, New Atlas noted, “a type VII system was found to target RNA, which could unlock a range of new tools through RNA editing. Others could be adapted to record when certain genes are expressed, or as sensors for activity in cells.”
Looking Ahead
The strides in science from the CRISPR-Cas9 give a hint at what can come from the new discovery. “Not only does this study greatly expand the field of possible gene editing tools, but it shows that exploring microbial ecosystems in obscure environments could pay off with potential human benefits,” New Atlas noted.
“This study introduces FLSHclust as a tool to cluster millions of sequences quickly and efficiently, with broad applications in mining large sequence databases. The CRISPR-linked systems that we discovered represent an untapped trove of diverse biochemical activities linked to RNA-guided mechanisms, with great potential for development as biotechnologies,” the researchers wrote in Science.
How these newfound gene-editing tools and the new FLSHclust algorithm will eventually lead to new clinical laboratory tests and precision medicine diagnostics is not yet clear. But the discoveries will certainly improve DNA/RNA editing, and that may eventually lead to new clinical and biomedical applications.
—Kristin Althea O’Connor
Related Information:
Algorithm Identifies 188 New CRISPR Gene-Editing Systems
188 New Types of CRISPR Revealed by Algorithm
FLSHclust, a New Algorithm, Reveals Rare and Previously Unknown CRISPR-Cas Systems
Uncovering the Functional Diversity of Rare CRISPR-Cas Systems with Deep Terascale Clustering
Questions and Answers about CRISPR