News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

City of Baltimore, University of Maryland Create Pilot Program to Train People to Work in Clinical Laboratories

Funded by the CDC, the program hopes to alleviate personnel shortages in Baltimore area clinical labs while also producing a knowledge base for lab managers nationwide

Clinical laboratory managers struggling to fill vacant phlebotomy and accessioning positions will be interested to learn about a pilot program being conducted by the City of Baltimore and the University of Maryland School of Medicine to train people “for employment in hospital laboratories, phlebotomy draw sites, and reference laboratory processing centers,” according to The Elm, a publication of the University of Maryland, Baltimore.

The 14-week “Mayor’s Workforce Development Program” began on April 19 and will continue through the end of July. Participants meet twice a week for lectures and experience working with specimens in actual medical laboratories or in a “hybrid learning environment,” The Elm reported.

“I came up with the idea of doing cross-training for laboratory people and public health people in case there is another pandemic,” explained Lorraine Doucette in an exclusive interview with Dark Daily. Doucette, who is managing the pilot program, is an Assistant Professor and Medical Laboratory Science Program Director, Department of Medical and Research Technology, University of Maryland School of Medicine.

“There is already a huge shortage of laboratory people, but an enormous amount left in droves during the pandemic because they got physically burned out. Some just could not do the work anymore because of things like carpal tunnel syndrome and repetitive stress injuries,” she added.

Lorraine Doucette

“I’m confident that all 15 or 16 students who complete this workforce program will be employed within weeks of finishing as accessioners,” said Lorraine Doucette (above), Assistant Professor and Medical Laboratory Science Program Director, Department of Medical and Research Technology, University of Maryland School of Medicine, in an exclusive interview with Dark Daily. “This has been so successful. This is making a difference in people’s lives. This is changing them from being unemployed to actually having a career in a clinical laboratory. They love it. They are so proud of themselves.” (Photo copyright: LinkedIn.)

CDC Funding Part of National Program to ‘Enhance’ Clinical Lab Workforce

Doucette and her team met with people from the Baltimore Mayor’s Office of Employment Development (MOED) to discuss a possible partnership. They were interested and Doucette eventually became a recipient of funding through a cooperative agreement with the federal Centers for Disease and Control Prevention (CDC).

The collaboration is part of a CDC project titled, “Enhancing US Clinical Workforce Capacity.’ Doucette will receive a total of one million dollars over the course of three years to facilitate the program in stages.

“It is not necessarily an old-fashioned grant where they just gave me a pile of money,” Doucette told Dark Daily. “The CDC works with me constantly via reports and Zoom meetings.”

This CDC project is designed to both cross train clinical laboratory professionals in public health, clinical chemistry, microbiology, and hematology, as well as to train individuals in the workforce development program to become laboratory accessioners.

“They are going to be qualified to work as an accessioner in any local hospital,” Doucette noted. “The people who pick up the lab samples out of the tube system are the accessioners and there is a huge shortage of them also. We’re teaching them the basics so the more advanced lab personnel can perform the higher-level work.”

Students in the program learn all about lab safety and the proper handling of lab samples as well as proper data entry, professionalism, and how to communicate with medical and laboratory personnel. They work with urine and blood samples and fabricated spinal fluid samples. 

“They are taught about the different tubes, what the anticoagulants are, what makes each tube unique, why you can’t mix samples, balancing a centrifuge, and how to properly put on and remove safety gear like lab coats, gloves, and goggles,” Doucette explained. 

The Mayor’s Workforce Development Program is free for Baltimore residents looking for employment via the workforce office. The only requirements for enrolling are having a high school education and being fully vaccinated.

Phlebotomy and Additional Cross-training to Be Added

Doucette would eventually like to add a phlebotomy segment to future training sessions. “We would like to develop an additional partnership with BCCC (Baltimore City Community College) for the phlebotomy piece. That would definitely increase the people and the program’s marketability,” she said. “They could not only draw the blood, but they could also process the sample.”

After assessing the success of the current program and determining what did and did not work, there will be an additional training session held in the fall. Next year, there will be more sessions held for individuals in the workforce program and cross-training classes for current clinical laboratory professionals.

The strategy for the third year of the grant includes sharing the specifics of the program with medical laboratory professionals via the CDC’s free OneLab REACH platform. This portion includes the online delivery of documentation such as training sheets, lab exercises, Microsoft PowerPoint presentations, and videos used in both the accessioning and cross-training coursework.

“We’re going to do the OneLab REACH,” Doucette said. “I’m going to be putting it all online and marketing it all around the country in stages and increments. I will be going to a lot of professional society meetings and talking to lab managers to help them understand the concept of how this all benefits them.”

This unique collaboration between the City of Baltimore and University of Maryland School of Medicine, funded by the CDC, should help alleviate some of the clinical laboratory worker shortages that exist in the Baltimore area. Hopefully, the effort will result in additional knowledge, resources, and tools to assist medical lab managers across the country to recruit and retain talented, highly-skilled workers.   

JP Schlingman

Related Information:

Enhancing US Clinical Laboratory Workforce Capacity

What Is an Accessioner and How to Become One

Enhancing US Clinical Laboratory Workforce Capacity

93.322: CSELS Partnership: Strengthening Public Health Laboratories

NOFO OE22-2202: Enhancing US Clinical Laboratory Workforce Capacity—Frequently Asked Questions

NOFO OE22-2202: Enhancing US Clinical Laboratory Workforce Capacity—Q/A Session Transcript

Forbes Senior Contributor Covers Reasons for Growing Staff Shortages at Medical Laboratories and Possible Solutions

Medical Technologist Demand Exceeds Supply by Large Margin Across the United States as Clinical Laboratories Scramble to Stay Fully Staffed

University of Washington Researchers Use Genomic Analysis to Track Shigella Infections as Decreased Cost of Gene Sequencing Aids Public Health Research

Another study in the United Kingdom that also used genomic analysis to understand drug-resistant Shigella produced findings that may be useful for microbiologists and medical laboratory scientists

From the onset of an infectious disease outbreak, public health officials, microbiologists, and clinical laboratory managers find it valuable to trace the origin of the spread back to the “index case” or “patient zero”—the first documented patient in the disease epidemic. Given the decreased cost of genomic analysis and improved accuracy of gene sequencing, infectious disease researchers are finding that task easier and faster than ever.

One recent example is a genomic study conducted at University of Washington (UW) in Seattle that enabled researchers to “retrace” the origin and spread of a “multidrug-resistant Shigellosis outbreak” from 2017 to 2022. “The aim of the study was to better understand the community transmission of Shigella and spread of antimicrobial resistance in our population, and to treat these multi-drug resistant infections more effectively,” the UW scientists stated in a new release.

Shigellosis (aka, bacillary dysentery) is a highly contagious disease of the intestines that can lead to hospitalization. Symptoms include fever, stomach cramps, diarrhea, dysentery, and dehydration.

“Additional analysis of the gut pathogen and its transmission patterns helped direct approaches to testing, treatment, and public health responses,” the UW news release states.

Usually prevalent in countries with public health and sanitation limitations, the “opportunistic” Shigella pathogen is now being seen in high-income countries as well, UW reported.

The researchers published their findings in Lancet Infectious Diseases, titled, “Genomic Reconstruction and Directed Interventions in a Multidrug-Resistant Shigellosis Outbreak in Seattle, WA, USA: A Genomic Surveillance Study.”

Ferric Fang, MD

“You can’t really expect an infectious disease to remain confined to a specific at-risk population. [Shigella infections are] very much an emerging threat and something where our public health tools and therapeutic tools have significant limitations,” infectious disease specialist Ferric Fang, MD (above) told CIDRAP News. Fang is a UW professor of Microbiology and Clinical Laboratory Medicine and a corresponding author of the UW study. (Photo copyright: University of Washington.)

Why are Shigella Cases Increasing?

The US Centers for Disease Control and Prevention (CDC) records more than 450,000 shigellosis infections each year in the US. The most common species in the US, according to CDC statistics, is Shigellaa sonnei.

Other members of the genus include:

Generally, Shigella infects children, travelers, and men who have sex with men (MSM), the CDC noted.

The UW researchers were motivated to study Shigella when they noticed an uptick in drug-resistant shigellosis cases in Seattle’s homeless population in 2020 at the beginning of the COVID-19 pandemic, Center for Infectious Disease Research and Policy News (CIDRAP News) reported.

“Especially during the pandemic, a lot of public facilities were closed that homeless people were used to using,” infectious disease specialist Ferric Fang, MD, told CIDRAP News. Fang is Professor of Microbiology and Laboratory Medicine at University of Washington and corresponding author of the UW study.

The researchers studied 171 cases of Shigella identified from 2017 to 2022 by clinical laboratories at Harborview Medical Center and UW Medical Center in Seattle. According to CIDRAP News, the UW researchers found that:

  • 46% were men who have sex with men (MSM).
  • 51% were people experiencing homelessness (PEH).
  • Fifty-six patients were admitted to the hospital, with eight to an intensive care unit.
  • 51% of isolates were multi-drug resistant (MDR).

Whole-Genome Sequencing Reveals Origin

The UW scientists characterized the stool samples of Shigella isolates by species identification, phenotypic susceptibility testing, and whole-genome sequencing, according to their Lancet Infectious Diseases paper. The paper also noted that 143 patients received antimicrobial therapy, and 70% of them benefited from the treatment for the Shigella infection.

Whole-genome sequencing revealed that two strains of Shigella (S. flexneri and S. sonnei) appeared first in Seattle’s MSM population before infecting the PEM population.

The genomic analysis found the outbreak of drug-resistant Shigella had international links as well, according to CIDRAP News:

  • One S. flexneri isolate was associated with a multi-drug resistant (MDR) strain from China, and
  • S. sonnei isolates resembled a strain characteristic of a current outbreak of MDR Shigella in England.

“The most prevalent lineage in Seattle was probably introduced to Washington State via international travel, with subsequent domestic transmission between at-risk groups,” the researchers wrote.

“Genomic analysis elucidated not only outbreak origin, but directed optimal approaches to testing, treatment, and public health response. Rapid diagnostics combined with detailed knowledge of local epidemiology can enable high rates of appropriate empirical therapy even in multidrug-resistant infection,” they continued.

UK Shigella Study Also Uses Genomics

Another study based in the United Kingdom (UK) used genomic analysis to investigate a Shigella outbreak as well.

Motivated by a UK Health Security Agency report of an increase in drug-resistance to common strains since 2021, the UK researchers studied Shigella cases from September 2015 to June 2022.

According to a paper they published in Lancet Infectious Diseases, the UK researchers “reported an increase in cases of sexually transmitted S. flexneri harboring blaCTX-M-27 (an antibiotic-resistant gene) in England, which is known to confer resistance to third-generation cephalosporins (antibiotics),” the researchers wrote.

Their analysis of plasmids (DNA with genes having antibiotic resistance) revealed a link in two drug-resistant Shigella strains at the same time, CIDRAP News explained.

“Our study reveals a worsening outlook regarding antimicrobial-resistant Shigella strains among MSM and highlights the value of continued integration of genomic analysis into surveillance and research,” the UK-based scientists wrote.

Current challenges associated with Shigella, especially as it evades treatment, may continue to demand attention from microbiologists, clinical laboratory scientists, and infectious disease specialists. Fortunately, use of genomic analysis—due to its ongoing improvements that have lowered cost and improved accuracy—has made it possible for public health researchers to better track the origins of disease outbreak and spread.    

Donna Marie Pocius

Related Information:

Genomic Reconstruction and Directed Interventions in a Multidrug-Resistant Shigellosis Outbreak in Seattle, Washington, USA: a Genomic Surveillance Study.

Genomics Aids Study of Seattle 2017-22 Shigella Outbreak

Q/A: Shigella—Shigellosis

A Spotlight on Growing Threat of Drug-Resistant Shigella

Emergence of Extensively Drug-Resistant and Multidrug-Resistant Shigella flexneri serotype 2a Associated with Sexual Transmission Among Gay, Bisexual, and Other Men Who Have Sex with Men, in England: A Descriptive Epidemiological Study

Partnership of Illumina and bioMérieux Proposes an Epidemiology Service to Provide Hospitals and Public Health Officials ‘Out-of-the-Box’ Genomic Pathogen Solutions

This collaborative effort with microbiology labs will keep microbiologists at the forefront of infectious disease diagnostics

A partnership of San Diego-based genome sequencing company Illumina, and the French multinational, in vitro diagnostics company bioMérieux, plans to launch a next-generation sequencing (NGS) epidemiology service that will allow microbiologists to rapidly identify strains that threaten hospital inpatients and public health, according to a press release distributed by the Illumina-bioMérieux team.

Illumina-bioMérieux Service to Aid Hospital and Public Health Labs 

Illumina designated sequencing laboratories with Illumina MiSeq® systems will collaborate with microbiologists working in hospital and public health laboratories to prevent, rapidly track, and contain infectious disease agents in hospitals and communities. (more…)

Medical Laboratories at Hospitals Urged to Improve Newborn Screening Procedures After Wisconsin Report Uncovers Shocking Testing Delays

Analysis of almost 3 million newborn blood samples found that tens of thousands of specimens were not screened promptly for rare but deadly disorders, leading to patient harm in some cases

State-mandated newborn testing has come under increased media scrutiny following the discovery that delays in reporting the clinical laboratory test results had resulted in harm to some children with genetic diseases. One source of problems is some hospitals fail to promptly submit specimens from babies to their state’s newborn testing laboratory.

In Wisconsin, pathologists and medical laboratory and laboratory managers probably know the story of Colton Hidde because of news stories about his case. When Karen and Mike Hidde brought their newborn baby Colton home from the hospital after his birth in October 2012, they had no idea that he would soon be close to death. He appeared to be a normal newborn. But he was not, and the Hiddes didn’t find out that he had a rare and life-threatening genetic defect until they rushed him back to the hospital less than 24 hours after bringing him home. (more…)

More Use of Whole Gene Sequencing Poised to Play Important New Roles in Microbiology and Medical Laboratory Testing

Cheaper, faster, and more accurate rapid gene sequencing technologies show great promise in identifying infectious disease agents

In clinical laboratories across the nation, microbiology has greatly benefited from the introduction of molecular diagnostics in clinical practice. Now the field of microbiology is poised to undergo a more profound transformation of clinical practice, due to advances in whole genome sequencing.

Leaders in this field are calling these developments “transformative” and say they have the potential to change “all aspects of microbiology.” The driver to this emerging trend is advanced technology that makes it possible to sequence the whole gene sequence of an organism in a day or less, for a cost that is $1,000 and falling rapidly.

In the past six months, microbiologists and pathologists at such hospitals as Methodist Hospital in Houston, Texas, have begun to do whole genome sequencing of microbes found in specimens collected from patients arriving in the emergency room. The New York Times wrote about these developments in a story titled “The New Generation of Microbe Hunters,” that it published on August 29, 2011.

(more…)

;