News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

GlaxoSmithKline to Use a ‘Breath Biopsy’ Test by Owlstone Medical in a Phase II Clinical Trial of a Respiratory Drug

It has been regularly demonstrated in recent decades that human breath contains elements that could be incorporated into clinical laboratory tests, so the decision to use this “breath biopsy” test in a therapeutic drug trial will be closely watched

When a major pharma company pays attention to a breath test, implications for clinical laboratories are often forthcoming. Such may be the case with GlaxoSmithKline (GSK). The global healthcare company has selected Owlstone Medical’s Breath Biopsy technology for use in its Phase II clinical trial of danirixin (DNX), a respiratory drug under development by GSK for treatment of chronic obstructive pulmonary disease (COPD), an Owlstone Medical news release announced.

Anatomic pathologists and medical laboratory leaders will be intrigued by GSK’s integration of breath-based specimens in a clinical trial of a respiratory drug. The partners in the trial aim to analyze breath samples to better understand the drug’s treatment effects and to discover personalized medicine (AKA, precision medicine) opportunities.

GSK (NYSE:GSK), headquartered in the UK but with a large presence in the US, researches and develops pharmaceutical medicines, vaccines, and other consumer health products.

Owlstone Medical, a diagnostic company, is developing a breathalyzer for disease and says it is on a mission to save 100,000 lives and $1.5 billion in healthcare costs. Dark Daily previously reported on Owlstone Medical’s Breath Biopsy platform. The Cambridge, England-based company has raised significant funding ($23.5 million) and already garnered credible cancer trial collaborators including the UK’s National Health Service (NHS).

Now, Owlstone Medical has brought its breath analysis technology to bear on chronic disease outside of cancer diagnostics development. A pharmaporum article called Owlstone’s Medical’s work with GSK an “additional boost of confidence” in the company’s technology, as well as a means for revenue.

Billy Boyle, co-founder and Chief Executive Officer, Owlstone Medical (above), shown with the company’s ReCIVA Breath Sampler device. This will be used by GSK in its Phase II respiratory disease clinical trial of danirixin to “capture VOC biomarkers in breath samples.” (Photo copyright: Business Weekly UK.)

GSK Studying Future Treatments for Respiratory Diseases

COPD affects about 700 million people worldwide, an increase of about 65% since 1990, GSK pointed out. In September 2017, GSK presented respiratory disease data and its pipeline medications at the European Respiratory Society in Milan, Italy. Included was information on danirixin (an oral CXCR2 antagonist), which is part of the company’s focus on COPD disease modification, according to a GSK news release.

“Each of our studies sets the bar for our future research and innovation,” noted Neil Barnes, MA Cantab, FRCP, FCCP(Hon), Vice President, Global Franchise Medical Head, GSK Respiratory, in the GSK press release.

Clinical Trial Aimed at Identifying the ‘Right’ Patients

With Owlstone Medical’s breathalyzer, GSK plans to explore how volatile organic compounds (VOCs) can help identify patients who will benefit most from the company’s medications, as well as evaluate Danirixin’s effects. A critical element of personalized medicine.

“It’s part of our efforts to identify the right patient for the right treatment,” said Ruth Tal-Singer, PhD, GSK’s Vice President of Medicine Development Leader and Senior Fellow, Respiratory Research and Development, in the Owlstone Medical news release.

VOCs in breath will be captured in a non-invasive way from patients who wear Owlstone Medical’s ReCIVA Breath Sampler, which, according to Owlstone Medical, has CE-mark clearance, a certification noting conformity with European health and safety standards. The VOCs breath samples will then be sent to Owlstone Medical’s lab for high-sensitivity analysis.

“Non-invasive Breath Biopsy can establish a role in precision medicine applications such as patient stratification and monitoring treatment response,” said Billy Boyle, Owlstone Medical’s co-Founder and Chief Executive Officer.

 VOC Biomarkers in Respiratory Disease

VOC profiles can be characteristic of COPD as well as other respiratory diseases including asthma, tuberculosis, and cystic fibrosis, reported Science/Business.

According to Owlstone Medical’s Website, VOCs are gaseous molecules produced by the human body’s metabolism that are suitable for Breath Biopsy. Their research suggests that exhaled breath reflects molecular processes responsible for chronic inflammation. Thus, VOCs captured through Breath Biopsy offer insight into respiratory disease biomarkers.

Breath also includes VOCs that originate from circulation, which can provide information on a patient’s response to medications.

How the Breath Biopsy Platform Works

Owlstone Medical’s platform relies on its patented Field Asymmetric Ion Mobility Spectrometry (FAIMS) technology, which “has the ability to rapidly monitor a broad range of VOC biomarkers from breath, urine and other bodily fluids with high sensitivity and selectivity,” according to the company’s website. During the process:

  • Gases are exchanged between circulating blood and inhaled fresh air in the lungs;
  • VOC biomarkers pass from the circulation system into the lungs along with oxygen, carbon dioxide, and other gases;
  • Exhaled breath contains exiting biomarkers.

It takes about a minute for blood to flow around the body. So, a breath sample during that time makes possible collection and analysis of VOC biomarkers from any part of the body touched by the circulatory system.

The medical analysis is enabled by software in the Owlstone Medical lab, Boyle told the Cambridge Independent.

“There’s an analogy with blood prints—you get the blood and can look for different diseases, and we’ve developed core hardware and technology to analyze the breath sample,” he said.

Another Breath Sample Device 

The ReCIVA Breath Sampler is not the only breathalyzer focused on multiple diseases.  Dark Daily reported on research conducted by Technion, Israel’s Institute of Technology, into a breath analyzer that can detect up to 17 cancers, and inflammatory and neurological diseases.

But Owlstone Medical stands out due, in part, to its noteworthy partners: the UK’s National Health Service, as well as the:

And now the company can add collaboration with GSK to its progress. Though some question the reliability of breath tests as biomarkers in the areas of sensitivity and specificity required for cancer diagnosis, Owlstone Medical appears to have the wherewithal to handle those hurdles. It is a diagnostics company that many pathologists and medical laboratory professionals may find worth watching.

—Donna Marie Pocius

Related Information:

Owlstone Medical’s Breath Biopsy Platform Integrated into GSK’s Phase II Respiratory Disease Clinical Trial

GSK Utilizes Owlstone Disease Breathalyser for Key Clinical Trials

GSK Presents Respiratory Data from Pipeline to Clinical Practice at ERS

GSK Boosts Medtech First Owlstone with Use of Breath Biopsy in Respiratory Trial

Glaxo to Stratify COPD Trial Using Breath Biopsy Device

Billy Boyle of Owlstone Medical on the Inspiration Behind His Mission to Save 100,000 From Dying of Cancer

Owlstone Medical and UK’s NHS Study Whether Breath Contains Useful Biomarkers

Breath Based Biomarker Detection: Informing Drug Development and Future Treatment Regimes

Clinical Laboratories Could Soon Diagnose 17 Diseases with a Single Breath Analyzer Test from Israel’s Institute of Technology

Owlstone Medical and UK’s NHS Study Whether Breath Contains Useful Biomarkers That Could Be Used in Medical Laboratory Tests for Multiple Cancers

Owlstone Medical’s breath biopsy platform takes aim at breath biomarkers for an earlier diagnosis of cancer; could it supplant tissue biopsies sent to pathology labs?

For many years, medical laboratory scientists and pathologists have known that human breath contains molecules and substances that have the potential to be used as biomarkers for detecting different diseases and health conditions. The challenge was always how to create clinical laboratory test technology that could use human breath samples to produce accurate and clinically useful information.

Stated differently, breath, the essence of life, may contain medical laboratory test biomarkers that could provide early-detection advantages to pathology groups in their fight against cancer. Now diagnostics company Owlstone Medical—developer of the Breath Biopsy platform—is about to conduct a clinical study in collaboration with the United Kingdom’s (UK’s) National Health Service (NHS) and others to demonstrate the effectiveness of its breath-based diagnostic tests.

Anatomic pathology groups and clinical laboratory leaders know human breath contains volatile organic compounds (VOCs) that can be useful diagnostic biomarkers for medical laboratory testing. Many possible breath tests have been researched. One such test, the urea breath test for detecting Helicobacter pylori (H. pylori), has been in clinical use for 20 years. As part of the test, patients with suspect stomach ulcers or other gastric concerns, swallow a tablet with urea and exhale carbon dioxide that is measured for H. pylori bacteria.

According to an Owlstone Medical news release, the new study, called the “PAN Cancer Trial for Early Detection of Cancer in Breath,” will explore the ability of Owlstone Medical’s Breath Biopsy platform to detect cancers of the:

Current medical care standards call for these cancers to be diagnosed by analyzing biopsied tissue specimens. If Owlstone Medical’s breath test performs well during trial, it could provide advantages over traditional tissue-based cancer testing that include:

  1. A non-invasive approach to finding cancer earlier;
  2. A lower price point as compared to a tissue biopsy cancer test; and
  3. Faster return of test results, since tissue would not need to be collected from patients during surgical procedures and sent to medical laboratories for analysis.

“By 2030, the number of new cancer cases per year is expected to rise to around 22-million globally. Some cancers are diagnosed very late when there are few treatment options available. Non-invasive detection of cancer in breath could make a real difference to survival,” stated Richard Gilbertson, PhD, Li Ka Shing Chair of Oncology, Director of the CRUK Cambridge Center, and Oncology Department Head at University of Cambridge, in the news release.

How the Breath Biopsy Platform Works

The Breath Biopsy platform relies on Owlstone Medical’s Field Asymmetric Ion Mobility Spectrometry (FAIMS) technology, which the diagnostics company explains is a “fast means to identifying volatile organic compound biomarkers in breath.”

Billy Boyle (above), co-founder and Chief Executive Officer at Owlstone Medical, demonstrates the ReCIVA Breath Sampler. “Positive results from the PAN cancer trial could be game-changing in the fight against cancer,” he noted in the news release. “Success in this study supports our vision of saving 100,000 lives and $1.5 billion in healthcare costs.” This technology has the potential to be disruptive to anatomic pathology, which relies on the analysis of biopsied tissue to detect cancer. (Photo copyright: Owlstone Medical.)

Here is how FAIMS works in the Breast Biopsy platform, according to the Owlstone Medical website:

  • Gases are exchanged between circulating blood and inhaled fresh air in the lungs;
  • VOC biomarkers in the body’s circulation system pass into air in the lungs, along with oxygen, carbon dioxide, and other gases;
  • Exhaled breath contains those biomarkers exiting the body;
  • Because it takes one minute for blood to flow around the body, a breath sample during that time makes possible collection and analysis of VOC biomarkers of any part of the body touched by the circulatory system.

One publication compared the capture of VOCs to liquid biopsies, another possible non-invasive cancer diagnostic technique being widely researched.

“The advantage to VOCs is that they can be picked up earlier than signatures searched for in liquid biopsies, meaning cancer can be diagnosed earlier and treated more effectively,” reported Pharmaphorum in its analysis of five technology companies fighting cancer.

As part of the clinical trial, breath samples will be collected in clinic settings with the hand-held Owlstone Medical ReCIVA Breath Sampler (equipped with a dime-sized FAIMS silicon chip). The samples will come from people with a suspected cancer diagnosis who are seeking care at Cambridge University Hospital’s Addenbrooke’s Hospital. To test reliability of the biomarkers, breath samples from patients with cancer and without cancer will be analyzed.

“You’re seeing a convergence of technology now, so we can actually run large-scale clinical studies to get the data to prove odor analysis has real utility,” stated Owlstone Medical co-founder and Chief Executive Officer Billy Boyle, in a New York Times article.

Breath Tests Popular Area for Research

The company’s Breath Biopsy platform is also being tested in a clinical trial for lung cancer being funded by the UK’s NHS. The study involves 3,000 people, the New York Times article reported.

This is not the first time we have reported on Owlstone Medical. A previous e-briefing explored the company’s technology in a study focused on diagnosis of lung cancer (See Dark Daily, “In the UK, Pathologists Are Watching Phase II of a Clinical Trial for a Breathalyzer System That Uses Only a Breath Specimen to Diagnose Lung Cancer,” May 11, 2015.)

Breath tests in general—because they generally are non-invasive, fast, and cost-effective—have been the subject of several other Dark Daily e-briefings as well, including those about:

Owlstone Medical’s ability to get backing from Britain’s NHS, as well as investments to the tune of $23.5 million (the most recent coming from Aviva Ventures) is a positive sign. That Owlstone Medical’s Breath Biopsy platform is credible enough to attract such respected collaborators in the cancer trials as the Cancer Research UK Cambridge Institute (CRUK), University of Cambridge, and Cambridge University Hospitals (CUH) NHS Foundation Trust is evidence that the company’s diagnostic technology is considered to have good potential for use in clinical care.

Medical laboratory managers and pathology group stakeholders will want to monitor these developments closely. Once proven in clinical trials such as those mentioned above, breath tests have the potential to supplant other medical laboratory diagnostics and perhaps lower the number of traditional biopsies sent to labs for diagnosis of cancer.

—Donna Marie Pocius


Related Information:

Owlstone Medical and Cancer Research UK (CRUK) Initiate Pan Cancer Clinical Trial to Evaluate Breath Biopsy for Early Detection of Disease New Cancer Detecting Breath Test to Undergo Clinical Trials

Five Tech Companies Advancing Against Cancer

Aviva Invests in Owlstone Medical Breath Biopsy Platform and its Expected Drive Adoption of Breath Biopsy in Healthcare

Owlstone Medical’s ReCIVA Named Invention of the Year in Top 50 Digital Health Awards

One Day a Machine Will Smell Whether You’re Sick

Cancer Breath Biomarker: CRUK and Owlstone Start Multi-Cancer Trail

In the UK, Pathologists Are Watching Phase II of a Clinical Trial for a Breathalyzer That Uses Only a Breath Specimen to Diagnose Lung Cancer

Companies Developing Non-Invasive and Wearable Glucose-Monitoring Devices That Can Report Test Data in Real Time to Physicians and Clinical Laboratories

Wisconsin Company Developing Breath-Based Diagnostic Test Technology That Can Detect Early-Stage Infections Within Two Years of Onset

Study into Use of Breath Analysis to Monitor Lung Cancer Therapy Enhances Clinical Laboratories Ability to Support Precision Medicine