News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

American Heart Association Announces CKM Syndrome to Describe ‘Strong Connection’ between Multiple Diseases

Newly-defined Cardiovascular-Kidney-Metabolic Syndrome (CKM) means physicians will be in close collaboration with clinical laboratories to make accurate diagnoses

Based on newly-identified “strong connections” between cardiovascular disease (CVD, or heart disease), kidney disease, Type 2 diabetes, and obesity, the American Heart Association (AHA) is calling for a “redefining” of the risk, prevention, and management of CVD, according to an AHA news release.

In a presidential advisory, the AHA defines a newly described systemic health disorder called Cardiovascular-Kidney-Metabolic Syndrome (CKM). The syndrome “is a systemic disorder characterized by pathophysiological interactions among metabolic risk factors, CKD (chronic kidney disease), and the cardiovascular system leading to multi-organ failure and a high rate of adverse cardiovascular outcomes.”

A CKM diagnosis, which is meant to identify patients who are at high risk of dying from heart disease, is based on a combination of risk factors, including:

  • weight problems,
  • issues with blood pressure, cholesterol, and/or blood sugar,
  • reduced kidney function. 

CKM is a new term and doctors will be ordering medical laboratory tests associated with diagnosing patients with multiple symptoms to see if they match this diagnosis. Thus, clinical laboratory managers and pathologists will want to follow the adoption/implementation of this new recommendation.

The AHA published its findings in its journal Circulation titled, “Cardiovascular-Kidney-Metabolic Health: A Presidential Advisory from the American Heart Association.”

“The advisory addresses the connections among these conditions with a particular focus on identifying people at early stages of CKM syndrome,” said Chiadi Ndumele, MD, PhD (above), Associate Professor of Medicine at Johns Hopkins University and one of the authors of the AHA paper, in a news release. “Screening for kidney and metabolic disease will help us start protective therapies earlier to most effectively prevent heart disease and best manage existing heart disease.” Clinical laboratories will play a key role in those screenings and in diagnosis of the new syndrome. (Photo copyright: Johns Hopkins University.)

Stages of CKM Syndrome

In its presidential advisory, the AHA wrote, “Cardiovascular-Kidney-Metabolic (CKM) syndrome is defined as a health disorder attributable to connections among obesity, diabetes, chronic kidney disease (CKD), and cardiovascular disease (CVD), including heart failure, atrial fibrillation, coronary heart disease, stroke, and peripheral artery disease. CKM syndrome includes those at risk for CVD and those with existing CVD.”

The five stages of CKM syndrome, which the AHA provided to give a framework for patients to work towards regression of the syndrome, are:

  • Stage 0: No CKM risk factors. Individuals should be screened every three to five years for blood pressure, cholesterol, and blood sugar levels, and for maintaining a healthy body weight.
  • Stage 1: Excess body fat and/or an unhealthy distribution of body fat, such as abdominal obesity, and/or impaired glucose tolerance or prediabetes. Patients have risk factors such as weight problems or prediabetes and are encouraged to make healthy lifestyle changes and try to lose at least 5% of their body weight.
  • Stage 2: Metabolic risk factors and kidney disease. Includes people who already have Type 2 diabetes, high blood pressure, high triglyceride levels, and/or kidney disease. Medications that target kidney function, lower blood sugar, and which help with weight loss should be considered at this stage to prevent diseases of the heart and blood vessels or kidney failure.
  • Stage 3: Early cardiovascular disease without symptoms in people with metabolic risk factors or kidney disease or those at high predicted risk for cardiovascular disease. People show signs of disease in their arteries, or have heart function issues, or may have already had a stroke or heart attack or have kidney or heart failure. Medication may also be needed at this stage.
  • Stage 4: Symptomatic cardiovascular disease in people with excess body fat, metabolic risk factors or kidney disease. In this stage, people are categorized as with or without having kidney failure. May also have already had a heart attack, stroke or heart failure, or cardiovascular conditions such as peripheral artery disease or atrial fibrillation.  

“We now have several therapies that prevent both worsening kidney disease and heart disease,” said Chiadi Ndumele, MD, PhD, Associate Professor of Medicine at Johns Hopkins University and one of the authors of the Circulation paper, in a news release. “The advisory provides guidance for healthcare professionals about how and when to use those therapies, and for the medical community and general public about the best ways to prevent and manage CKM syndrome.”

According to an AHA 2023 Statistical Update, one in three adults in the US have three or more risk factors that contribute to cardiovascular disease, metabolic disorders, or kidney disease. While CKM affects nearly every major organ in the body, it has the biggest impact on the cardiovascular system where it can affect the blood vessels, heart muscle function, the rate of fatty buildup in the arteries, electrical impulses in the heart and more. 

“There is a need for fundamental changes in how we educate healthcare professionals and the public, how we organize care and how we reimburse care related to CKM syndrome,” Ndumele noted. “Key partnerships among stakeholders are needed to improve access to therapies, to support new care models, and to make it easier for people from diverse communities and circumstances to live healthier lifestyles and to achieve ideal cardiovascular health.”

New AHA Risk Calculator

In November, the AHA announced PREVENT (Predicting risk of cardiovascular disease EVENTs), a tool that doctors can use to assess a person’s risk for heart attack, stroke, and heart failure. The new risk calculator, which incorporates CKM, allows physicians to evaluate younger people as well, and examine their long-term risks for cardiovascular issues.

“A new cardiovascular disease risk calculator was needed, particularly one that includes measures of CKM syndrome,” said Sadiya Khan, MD, Professor of Cardiovascular Epidemiology at Northwestern University’s Feinberg School of Medicine, in an AHA news story.

Doctors can use PREVENT to assess people ages 30 to 79 and predict risk for heart attack, stroke, or heart failure over 10 to 30 years.

“Longer-term estimates are important because short-term or 10-year risk in most young adults is still going to be low. We wanted to think more broadly and apply a life-course perspective,” Khan said. “Providing information on 30-year risk may reveal earlier opportunities for intervention and prevention efforts in younger people.”

According to CDC data, about 695,000 people died of heart disease in the US in 2021. That equates to one in every five deaths. Clinical pathologists will need to understand the AHA recommendations and how doctors will be ordering clinical laboratory tests to determine if a patient has CKM. Then, labs will play a role in helping doctors monitor patients to optimize health and prevent acute episodes that put patients in the hospital.

—JP Schlingman

Related Information:

‘CKM Syndrome’ Gives New Name to Multi-system Heart Disease Risk

Cardiovascular-Kidney-Metabolic Health: A Presidential Advisory from the American Heart Association

New Tool Brings Big Changes to Cardiovascular Disease Predictions

AHA Advisory Focuses on Cardiovascular-Kidney-Metabolic Syndrome

What You Need to Know about CKM Syndrome

Heart Disease Risk, Prevention and Management Redefined

AHA: Heart and Stroke Statistics

CDC: Heart Disease Facts

Independent Clinical Laboratories in Maryland May Need to Step-up Outreach with Hospitals as New CMS Program Launches Jan. 1

Clinical laboratory leaders will want to pay close attention to a significant development in Maryland. The state’s All-Payer Medicare program—the nation’s only all-payer hospital rate regulation system—is broadening in scope to include outpatient services starting Jan. 1. The expanded program could impact independent medical laboratories, according to the Maryland Hospital Association (MHA), which told Dark Daily that those labs may see hospitals reaching out to them.

The Centers for Medicare and Medicaid Services (CMS) and the state of Maryland expect to save $1 billion by 2023 in expanding Maryland’s existing All-Payer Model—which focused only on inpatient services since 2014—to also include primary care physicians, skilled nursing facilities, independent clinical laboratories, and more non-hospital settings, according to a CMS statement.

Healthcare Finance notes that it represents “the first time, CMS is holding a state fully at risk for the total cost of care for Medicare beneficiaries.”

Value of Precision Medicine and Coordination of Care to Clinical Labs

“If a patient receives care at a [medical] laboratory outside of a hospital, Maryland hospitals would be looking at ways to coordinate the sharing of that freestanding laboratory information, so that the hospital can coordinate the care of that patient both within and outside the hospital setting,” Erin Cunningham, Communications Manager at MHA, told Dark Daily. Such a coordinating of efforts and sharing of clinical laboratory patient data should help promote precision medicine goals for patients engaged with physicians throughout Maryland’s healthcare networks.

The test of the new program—called the Total Cost of Care (TCOC) Model—also could be an indication that Medicare officials are intent on moving both inpatient and outpatient healthcare providers away from reimbursements based on fees-for-services.

CMS and the state of Maryland said TCOC gives diverse providers incentives to coordinate, center on patients, and save Medicare per capita costs of care each year.

“What they are really doing is tracking how effective we are at managing the quality and the costs of those particular patients that are managed by the physicians and the hospitals together,” Kevin Kelbly, VP and Chief Financial Officer at Carroll Hospital in Westminster, told the Carroll County Times. “They will have set up certain parameters. If we hit those parameters, there could be a shared savings opportunity between the hospitals and the providers,” he added. (Photo copyright: LifeBridge Health.)

The TCOC runs from 2019 through 2023, when it may be extended by officials for an additional five years.

How Does it Work?

The TCOC Model, like the earlier All-Payer Model, will limit Medicare’s costs in Maryland through a per capita, population-based payment, Healthcare Finance explained.

It includes three programs, including the:

  • Maryland Primary Care Program (MDPCP), designed to incentivize physician practices by giving additional per beneficiary, per month CMS payments, and incentives for physicians to reduce the number of patients hospitalize;
  • Care Redesign Program (CRP), which is a way for hospitals to make incentive payments to their partners in care. In essence, rewards may be given to providers that work efficiently with the hospital to improve quality of services; and,
  • Hospital Payment Program, a population-based payment model that reimburses Maryland hospitals annually for hospital services. CMS provides financial incentives to hospitals that succeed in value-based care and reducing unnecessary hospitalizations and readmissions.

CMS and Maryland officials also identified these six high-priority areas for population health improvement:

  • Substance-use disorder;
  • Diabetes;
  • Hypertension;
  • Obesity;
  • Smoking; and
  • Asthma.

“We are going to save about a billion dollars over the next five years, but we are also providing better quality healthcare. So it’s going to affect real people in Maryland, and it helps us keep the whole healthcare system from collapsing, quite frankly,” Maryland Gov. Larry Hogan, told the Carroll County Times.

OneCare in Vermont, Different Approach to One Payer

Maryland is not the only state to try an all-payer model. Vermont’s OneCare is a statewide accountable care organization (ACO) model involving the state’s largest payers: Medicare, Medicaid, and Blue Cross and Blue Shield of Vermont, Healthcare Dive pointed out. The program aims to increase the number of patients under risk-based contracting and, simultaneously, encourage providers to meet population health goals, a Commonwealth Fund report noted.

Both Maryland’s and Vermont’s efforts indicate that payment plans which include value-based incentives are no longer just theory. In some markets, fees-for-service payment models may be gone for good.

Clinical laboratory leaders may want to touch base with their colleagues in Maryland and Vermont to learn how labs in those states are engaging providers and performing under payment programs that, if successful, could replace existing Medicare payment models in other states.

—Donna Marie Pocius

 

Related Information:

Maryland’s Total Cost of Care Model

Maryland All-Payer Model Expands to Include Outpatient Services

Gov. Hogan Sees Maryland Model as Example for U.S. Healthcare

The Maryland Model

Gov. Larry Hogan, Federal Government Sign Maryland Model All-Payer Contract

CMS Expands Maryland’s All-Payer Program to Outpatient Services

Vermont’s Bold Experiment in Community Driven Healthcare Reform

Mayo Clinic Researchers Find Some Bacteria Derail Weight Loss, Suggest Analysis of Individuals’ Microbiomes; a Clinical Lab Test Could Help Millions Fight Obesity

CDC reports more than 93-million US adults are obese, and health issues related to obesity include heart disease, stroke, type 2 diabetes, and cancers

In recent years, the role of the human microbiome in weight loss or weight gain has been studied by different research groups. There is keen interest in this subject because of the high rates of obesity, and diagnostic companies know that development of a clinical laboratory test that could assess how an individual’s microbiome affects his/her weight would be a high-demand test.

This is true of a study published this year in Mayo Clinic Proceedings. Researchers at Mayo Clinic looked at obese patients who were in an active lifestyle intervention program designed to help them lose weight. It was determined that gut microbiota can have a role in both hindering weight loss and supporting weight loss.

Gut Microbiota More Complicated than Previously Thought

The Mayo researchers determined “an increased abundance of Phascolarctobacterium was associated with [successful weight loss]. In contrast, an increased abundance of Dialister and of genes encoding gut microbial carbohydrate-active enzymes was associated with failure to [lose] body weight. A gut microbiota with increased capability for carbohydrate metabolism appears to be associated with decreased weight loss in overweight and obese patients undergoing a lifestyle intervention program.”

How do bacteria impede weight loss? Vandana Nehra, MD, Mayo Clinic Gastroenterologist and co-senior author of the study, explained in a news  release.

“Gut bacteria have the capacity to break down complex food particles, which provides us with additional energy. And this is normally is good for us,” she says. “However, for some individuals trying to lose weight, this process may become a hindrance.”

Put another away: people who more effectively metabolized carbohydrates were the ones who struggled to drop the pounds, New Atlas pointed out.

Vandana Nehra, MD (left), and Purna Kashyap, MBBS (right), are Mayo Clinic Gastroenterologists and co-senior authors of the Mayo study. “While we need to replicate these findings in a bigger study, we now have an important direction to pursue in terms of potentially providing more individualized strategies for people who struggle with obesity,” Nehra noted in the news release. Thus, precision medicine therapy for obese individuals could be based on Mayo Clinic’s research. (Photo copyright: Mayo Clinic.)

Mayo Study Provides Clues to Microbiota Potential in Weight Loss

The Mayo researchers wanted to know how gut bacteria behave in people who are trying to lose weight.

They recruited 26 people, ranging in age from 18 to 65, from the Mayo Clinic Obesity Treatment Research Program. Fecal stool samples, for researchers’ analysis, were collected from participants at the start of the three-month study period and at the end.  The definition of successful weight loss was at least 5% of body weight.

Researchers found the following, according Live Science:

  • 2 lbs. lost, on average, among all participants;
  • Nine people were successful, losing an average of 17.4 lbs.;
  • 17 people did not meet the goal, losing on average just 3.3 lbs.; and,
  • More gut bacterial genes that break down carbohydrates were found in stool samples of the unsuccessful weight loss group, as compared to the successful dieters.

The researchers concluded that “An increased abundance of microbial genes encoding carbohydrate-active enzyme pathways and a decreased abundance of Phascolarctobacterium in the gut microbiota of obese and overweight individuals are associated with failure to lose at least 5% weight following a 3-month comprehensive lifestyle intervention program.”

Purna Kashyap, MBBS, Mayo Clinic Gastroenterologist and co-senior author of the study, told Live Science, “The study suggests there is a need to take the microbiome into account in clinical studies (on weight loss), and it also provides an important direction to pursue in terms of providing individualized care in obesity.” The very basis of precision medicine.

Future Weight-Loss Plans Based on Patient’s Microbiota

The Mayo Clinic researchers acknowledged the small sample size and need for more studies with larger samples over a longer time period. They also noted in their paper that Dialister has been associated with oral infections, such as gingivitis, and its role in energy expenditure and metabolism is unclear.

Still, the study suggests that it may soon be possible to give people individualized weight loss plans based on their gut bacteria. Clinical laboratory professionals and pathologists will want to stay abreast of follow-up studies and replication of findings by other research teams. A future medical laboratory test to analyze patients’ microbiomes could help obese people worldwide as well as lab business volume.

—Donna Marie Pocius

Related Information:

Gut Microbial Carbohydrate Metabolism Hinders Weight Loss in Overweight Adults Undergoing Lifestyle Intervention with a Volumetric Diet

Gut Microbiota from Twins Discordant for Obesity Modulate Metabolism in Mice

CDC: Adult Obesity Facts

Makeup of an Individual’s Gut Bacteria May Play Role in Weight Loss, Mayo Study Suggests

Struggle to Lose Weight? Your gut Bacteria May Be to Blame

Your Gut Bacteria May Make It Harder to Lose Weight

Diet Hit a Snag? Your Gut Bacteria May be Partly to Blame

Can’t Lose Weight? Your Gut Bacteria Could be to Blame, According to Study

Richness of Human Gut Microbiome Correlates with Metabolic Markers

Annual Medical Spending Attributable to Obesity: Payer- and Service-Specific Estimates

5 Ways Gut Bacteria Affect Your Health

Cornell Researchers Identify Gut Microbes That May Help Some People Remain Thin; Findings Could Result in Clinical Laboratory Tests to Analyze Microbiomes of Individuals

Clinical Laboratories Might Soon be Diagnosing Obesity and Guiding Therapies that Utilize Engineered Microbes

Clinical Laboratories Might Soon Be ‘Diagnosing’ Obesity and Guiding Therapies That Utilize Engineered Microbes

Obesity may be one of several health conditions and diseases where the human microbiome can be harnessed for diagnostic and therapeutic uses

Microbiologists could soon be the front lines in the nation’s fight against obesity and possibly other chronic diseases. New research underway at Vanderbilt University could lead to a host of new clinical laboratory tests that use engineered microbes.

This research is revealing how the human microbiome can be the source of new biomarkers for diagnostic tests and therapeutic drugs. In fact, early research findings point to the possibility that pathologists and clinical laboratories may eventually use the human microbiome in their daily work.

Engineering Bacteria to Battle Obesity

The human microbiome has remained largely unstudied. One reason why this is true is that it has been difficult to recreate, in the laboratory, the optimal conditions to allow these microbes to grow and thrive just as they do in the human body. However, as researchers continue to make new discoveries about this community of micro-organisms, there is optimism that elements of the human microbiome can be used to develop novel medical laboratory tests. (more…)

Researchers Determine That Individuals’ ‘Breathprint’ Are Unique; May Have Potential for Clinical Laboratory Testing When Coupled With Mass Spectrometry Technology

Pathologists may be interested to learn that everyone’s breath reveals a signature composition of metabolites that may reflect a lifetime of diet, state of health, illnesses, and exposure to chemicals

New research shows that a person’s “breathprint” is as unique as a fingerprint and may be as effective as bodily fluids in diagnosing diseases. That same research effort is showing that it is feasible to combine breath specimens and mass spectrometry to accurately identify disease. That could give clinical laboratories a new methodology to use when creating diagnostic assays.

These findings are part of a new study conducted by researchers at the Swiss Federal Institute of Technology (ETH Zurich) in Zurich. The study was published by the journal PLOS ONE. (more…)

;