University College London Researchers Develop Carbon Beads That Slow the Progress of Liver Disease and Improve Gut Microbiome
As this therapeutic approach gains regulatory approval, clinical laboratory tests to determine condition of patient’s gut microbiota and monitor therapy will be needed
Some developments in the clinical laboratory industry are less about diagnostic tests and more about novel approaches to therapy. Such is the case with a new carbon bead technology developed by researchers from University College London (UCL) and the Royal Free Hospital intended to remove harmful bacteria toxins from the gut before they leak to the liver. The macroporous beads, which come in small pouches, are delivered orally and could be utilized in the future to treat a number of diseases.
Why is this relevant? Once a new treatment is accepted for clinical use, demand increases for a clinical laboratory test that confirms the therapy will likely work and to monitor its progress.
In collaboration with Yaqrit, a UK-based life sciences company that develops treatments for chronic liver disease, the UCL and Royal Free Hospital scientists engineered the carbon beads—known as CARBALIVE—to help restore gut health. They measured the technology’s impact on liver, kidney, and brain function in both rats and mice.
“The influence of the gut microbiome on health is only just beginning to be fully appreciated,” said Rajiv Jalan, PhD, Professor of Hepatology at UCL in a press release. “When the balance of the microbiome is upset, ‘bad’ bacteria can proliferate and out-compete the ‘good’ bacteria that keeps the gut healthy.
“One of the ways [the ‘bad’ bacteria] do this is by excreting endotoxin, toxic metabolites, and cytokines that transform the gut environment to make it more favorable to them and hostile to good bacteria,” he continued. “These substances, particularly endotoxin, can trigger gut inflammation and increase the leakiness of the gut wall, resulting in damage to other organs such as the liver, kidneys, and brain.”
The researchers published their findings in Gut, a journal of the British Society of Gastroenterology, titled, “Clinical, Experimental and Pathophysiological Effects of Yaq-001: A Non-absorbable, Gut-restricted Adsorbent in Models and Patients with Cirrhosis.”
“I have high hopes that the positive impact of these carbon beads in animal models will be seen in humans, which is exciting not just for the treatment of liver disease but potentially any health condition that is caused or exacerbated by a gut microbiome that doesn’t work as it should,” said Rajiv Jalan, PhD (above), Professor of Hepatology, University College London, in a press release. “This might include conditions such as irritable bowel syndrome (IBS), for example, which is on the rise in many countries.” Though not a clinical laboratory diagnostic test, new therapies like CARBALIVE could be a boon to physicians treating patients with IBS and other gastrointestinal conditions.
Developing the Carbon Beads
The team discovered CARBALIVE is effective in the prevention of liver scarring and injury in animals with cirrhosis when ingested daily for several weeks. They also found a reduced mortality rate in test animals with acute-on-chronic-liver-failure (ACLF).
After achieving success with CARBALIVE in animals, the researchers tested the technology on 28 cirrhosis patients. The carbon beads proved to be safe for humans and had inconsequential side effects.
“In cirrhosis, a condition characterized by scarring of the liver, it is known that inflammation caused by endotoxins can exacerbate liver damage,” Jalan explained. “Part of the standard treatment for cirrhosis is antibiotics aimed at controlling bad bacteria, but this comes with the risk of antibiotic resistance and is only used in late-stage disease.”
The beads, which are smaller than a grain of salt, contain an exclusive physical structure that absorbs large and small molecules in the gut. They are intended to be taken with water at bedtime as harmful bacteria is more likely to circulate through the body at night which could result in damage. The carbon beads do not kill bacteria, which decreases the risk of antibiotic resistance. They eventually pass through the body as waste.
“They work by absorbing the endotoxins and other metabolites produced by ‘bad’ bacteria in the gut, creating a better environment for the good bacteria to flourish and helping to restore microbiome health,” said Michal Kowalski, M.Sc.Eng, Director and VP of Operations at Yaqrit, in the UCL news release.
“This prevents these toxins from leaching into other areas of the body and causing damage, as they do in cirrhosis,” he added. “The results in animal models are very positive, with reduction in gut permeability, liver injury, as well as brain and kidney dysfunction.”
Additional Research
The researchers plan to perform further clinical trials in humans to determine if the carbon beads are effective at slowing the progression of liver disease. If the benefits that were observed in lab animals prove to be compelling in humans, the technology may become an invaluable tool for the treatment of liver disease and other diseases associated with poor microbiome health in the future.
According to the American Liver Foundation, 4.5 million adults in the US have been diagnosed with liver disease. However, it is estimated that 80 to 100 million adults have some form of fatty liver disease and are unaware of it. Liver disease was the 12th leading cause of death in the US in 2020 with 51,642 adults perishing from the disease that year.
According to BMC Public Health, globally there were 2.05 million new cases of liver cirrhosis diagnosed in 2019. In that year, 1.47 million people around the world died from the disease.
More research and clinical studies are needed before this novel technology can be used clinically. When and if that happens, the demand for clinical laboratory tests that measure microbiome deficiencies and monitor patient progress during therapy will likely be high.
—JP Schlingman
Related Information:
Carbon Beads Help Restore Healthy Gut Microbiome and Reduce Liver Disease Progression
Tiny Beads of Carbon Could Save Lives
UCL Study Reveals Carbon Beads Could Help Reduce Progression of Liver Disease
How Many People Have Liver Disease?
Global Epidemiology of Cirrhosis—Aetiology, Trends and Predictions
Acute-on-Chronic Liver Failure: Definition, Prognosis and Management