India’s Neuberg Diagnostics Embraces AI and Digital Pathology While Opening Its First Clinical Laboratory in the US
One of the world’s fastest growing medical laboratory companies in India is using digital pathology systems and AI to replace older diagnostic technologies
Artificial intelligence (AI) is gaining acceptance around the world and use of AI to analyze digital pathology images is expected to be a major disruptor to the profession of anatomic pathology. Internationally, several pathology companies already use AI-powered solutions to diagnose cancer.
One such example is Neuberg Diagnostics, a fast-growing clinical laboratory company in Chennai, India. Neuberg has been using AI to review digital pathology images for several years, according to Chairman and Managing Director GSK Velu, PhD, BPharm.
“We already use AI in our laboratories,” Velu said in an exclusive interview with Dark Daily. “Our main reference laboratories currently use digital pathology systems to support the pathologists and many of them are using AI with these digital pathology systems.
“AI and data analytics tools are being used in other departments too, such as in our wellness department where we use AI for predictive analytics,” he added. “We also use AI in our genomics division, and we are introducing AI into other divisions slowly and steadily.”
Neuberg operates 120 laboratories in an extensive network in India, South Africa, and the United Arab Emirates (UAE), and now in the US as well.
Neuberg Diagnostics Opens First Lab in US
In “India’s Neuberg Diagnostics Expands into US Market,” Dark Daily’s sister publication, The Dark Report, reported on Neuberg opening its first laboratory in the United States in Raleigh, NC. The Neuberg Centre for Genomic Medicine (NCGM) opened in May and will focus on genomic and molecular testing based on next-generation sequencing (NGS) techniques.
Replacing Older Pathology Technologies
As has been happening at other anatomic pathology centers around the world, Neuberg has been using digital pathology systems to replace older technologies. “One of our largest labs is our Bangalore Reference Lab,” Velu said. “There, we do not use microscopes for histopathology, and that lab has used digital pathology for routine review of specimens for several years now.
“But because artificial intelligence is still emerging, we can’t rely on AI with all of our digital pathology systems,” he added. “Although, of course, AI is certainly an aid to everything we do with digital pathology.
“For a variety of reasons, the adaptation of artificial intelligence in anatomic pathology is not happening as effectively nor as fast as we would like,” he noted. “So, for now, we need to wait and watch a bit longer, either because adaptation by pathologists is slow, or because AI tools are still a bit of a worry for some pathologists.
Younger Pathologists Adapt Faster to Digital Pathology
One reason could be that conventional pathologists worry about relying completely on AI for any diagnosis, Velu noted. “I’m certain that the more recent generation of pathologists who are now in their 30s, and the new people coming into pathology, will start adapting more quickly to digital pathology and to AI faster than the older generation of pathologists have done.
“The younger pathologists have a greater appreciation for the potential of digital pathology, while the older pathologists don’t want to let go of conventional diagnosis methods,” he added.
“For example, we have not yet seen where pathologists are reviewing breast image scans,” he commented. “But, at the same time, AI has been well-accepted among radiologists who are reviewing breast mammography scans.”
In India and in other markets worldwide, radiologists have adapted AI tools for breast mammography scans to diagnose breast cancer, he noted. “But that’s not happening even among pathologists who are doing cancer screening,” he said.
Velu suggested that another reason for the slow adoption of AI tools in pathology is that these systems are relatively new to the market. “Maybe the AI tools that are used with digital pathology are not as reliable as we hoped they would be, or they are not fully robust at the moment,” he speculated. “That’s why I say it will take some time before the use of AI for diagnosis becomes more widespread among pathologists. So, for now, we must wait until digital pathology and AI tools work together more seamlessly.
Replacing Conventional Pathology Technologies and Methods
“When those two technologies—AI and digital pathology systems—are linked more closely, their use will take hold in a substantial way,” Velu predicted. “When that happens, they are likely to replace conventional pathology methods completely.
“Currently, we are in the early stages of a transformation,” he added. “In our labs, you can see that the transformation is ongoing. We are using digital pathology systems even in our smaller labs. Then, the staff in our smaller labs do the processing of slides to convert them to digital images and send them to our labs in the larger cities. There, the professional staff uses AI to review those digital images and issue reports based on those images.
“Using our digital pathology systems and AI in that way means that we can make that technology available even in smaller towns and villages that have access only to our smaller labs,” he commented.
Velu added that wider use of digital pathology systems could improve the quality of care that pathologists deliver to patients in a significant way, particularly in rural areas. “Here in India, we are not seeing a huge shortage of pathologists, except in rural areas and villages,” he explained. “In those places, we could run short of pathologists.
“That is the reason we are trying to adapt the use of telepathology more widely,” he noted. “To do that, we might have technicians and histologists who will do just processing of slides so that they can send the digital images to our pathologists located in larger cities. Then, those surgical pathologists will review the cases and send the reports out. That’s the model that we are trying to slowly follow here.”
As use of digital pathology images increased, many predicted that specimens would flow from the US to India. This would happen because of the belief that the lower cost of surgical pathology in India would successfully draw business away from pathology groups here in the United States.
However, Neuberg turned the tables on that belief when it announced the opening of its Neuberg Centre for Genomic Medicine (NCGM), a state-of-the-art esoteric and genetic testing laboratory in Raleigh, NC. The NCGM lab is CLIA-certified and Neuberg says it is ready to compete with labs in this country on their home turf.
These are reasons why pathologists and pathology practice administrators in the United States may want to watch how Neuberg Diagnostics continues to develop its use of digital pathology platforms and AI-powered digital image analysis tools throughout its international network of laboratories.
—Joe Burns
Related Information
India’s Neuberg Diagnostics Expands into U.S. Market
Neuberg Diagnostics Launches Clinical Laboratory in the US
Neuberg Diagnostics Launches NCGM, Its First Laboratory in the USA
Neuberg Diagnostics Commences Clinical Operations in US
Neuberg Diagnostics to Expand in Africa, ME and India, invest Rs 150cr