Clinical laboratories and pathologists should expect to receive increase referrals from oncologists with younger patients
More people are getting serious cases of cancer at younger and younger ages. So much so that some anatomic pathologists and epidemiologists are using the term “Turbo Cancers” to describe “the recent emergence of aggressive cancers that grow very quickly,” Vigilant News reported.
Cancer continues to be the second leading cause of death in the United States and current trends of the disease appearing in younger populations are causing alarm among medical professionals and scientists.
“Because these cancers have been occurring in people who are too young to get them, basically, compared to the normal way it works, they’ve been designated as turbo cancers,” Harvey Risch, MD, PhD, Professor Emeritus of Epidemiology in the Department of Epidemiology and Public Health at the Yale School of Public Health and Yale School of Medicine, in an interview with Epoch TV’sAmerican Thought Leaders.
It’s anatomic pathologists who receive the biopsies and analyze them to diagnose the cancer. Thus, they are on the front lines of seeing an increased number of biopsies for younger patients showing up with the types of cancers that normally take many years to grow large enough to be discovered by imaging and lumps leading to biopsy and diagnosis. It’s a medical mystery that may have long term effects on younger populations.
“What clinicians have been seeing is very strange things,” said Harvey Risch, MD, PhD (above), Professor Emeritus of Epidemiology at the Yale School of Public Health and Yale School of Medicine, in an Epoch TV interview. “For example, 25-year-olds with colon cancer, who don’t have family histories of the disease—that’s basically impossible along the known paradigm for how colon cancer works—and other long-latency cancers that they’re seeing in very young people.” Epidemiologists and anatomic pathologists are describing these conditions as “turbo cancers.” (Photo copyright: Yale University.)
Early-Onset Cancer Rates Jump Sharply
According to the federal Centers for Disease Control and Prevention (CDC), about 3.3 million Americans died in 2022, and 607,800 of those deaths were attributed to cancer. This statistic translates to approximately 18.4% of US deaths being due to cancer last year.
An article published in the Journal of the American Medical Association titled, “Patterns in Cancer Incidence among People Younger than 50 Years in the US, 2010 to 2019,” states that the rates of cancer in people under the age of 50 has risen sharply in recent years. The study found that “the incidence rates of early-onset cancer increased from 2010 to 2019. Although breast cancer had the highest number of incident cases, gastrointestinal cancers had the fastest-growing incidence rates among all early-onset cancers.”
The largest increase in cancer diagnoses occurred in people in the 30 to 39-year-old age group. This number represents a jump of almost 20% for the years analyzed for individuals in that demographic. The researchers also found that cancer rates decreased in individuals over the age of 50.
Breast cancer, which increased by about 8% in younger people, accounted for the most diagnoses in this age group. However, the biggest increase was 15% for gastrointestinal cancers, including colon, appendix, bile duct, and pancreatic cancer.
Because cancer can recur or progress, researchers have concerns about what happens to young cancer patients as they grow older and what effect cancer may have on their lives.
“They are at a transitional stage in life,” Chun Chao, PhD, Research Scientist, Division of Epidemiologic Research at Kaiser Permanente, told The Hill. “If you think about it, this is the age when people are trying to establish their independence. Some people are finishing up their education. People are trying to get their first job, just start to establish their career. And people are starting new families and starting to have kids. So, at this particular age, having a cancer diagnosis can be a huge disruption to these goals.”
Sadly, young cancer survivors have a heightened risk of developing a second cancer and a variety of other health conditions, such as cardiovascular diseases and metabolic disorders.
Lifestyle a Factor in Increased Risk for Cancer
“The increase in early-onset cancers is likely associated with the increasing incidence of obesity as well as changes in environmental exposures, such as smoke and gasoline, sleep patterns, physical activity, microbiota, and transient exposure to carcinogenic compounds,” according to the JAMA study.
“Suspected risk factors may involve increasing obesity among children and young adults; also the drastic change in our diet, like increasing consumption of sugar, sweetened beverages, and high fat,” Hyuna Sung, PhD, Cancer Surveillance Researcher at the American Cancer Society, told US News and World Report. “The increase in cancers among young adults has significant implications. It is something we need to consider as a bellwether for future trends.”
“Increased efforts are required to combat the risk factors for early-onset cancer, such as obesity, heavy alcohol consumption, and smoking,” said Daniel Huang, MD, Assistant Professor of Medicine at the National University of Singapore, one of the authors of the study, in the US News and World Report interview.
Other studies also have shown a rise in so-called turbo cancers.
“Cancer as a disease takes a long time to manifest itself from when it starts. From the first cells that go haywire until they grow to be large enough to be diagnosed, or to be symptomatic, can take anywhere from two or three years for the blood cancers—like leukemias and lymphomas—to five years for lung cancer, to 20 years for bladder cancer, or 30 to 35 years for colon cancer, and so on,” Risch told the Epoch Times.
Not the Occurrence Oncologists Expect
“Some of these cancers are so aggressive that between the time that they’re first seen and when they come back for treatment after a few weeks, they’ve grown dramatically compared to what oncologists would have expected,” Risch continued. “This is just not the normal occurrence of how cancer works.”
Risch believes that damage to the immune system is the most likely cause of the rise in turbo cancers. He said the immune system usually recognizes, manages, and disables cancer cells so they cannot progress. However, when the immune system is impaired, cancer cells can multiply to the point where the immune system cannot cope with the number of bad cells.
It is a statistical fact that more people are being diagnosed with serious cases of cancer at younger and younger ages. If this trend continues, clinical laboratories and pathologists can expect to see more oncology case referrals and perform more cancer diagnostic tests for younger patients.
The new method employs a pH sensitive dye and AI algorithms to ‘distinguish between cells originating from normal and cancerous tissue, as well as among different types of cancer’ the researchers said
Might a pH-sensitive dye in tandem with an image analysis solution soon be used to identify cancerous cells within blood samples as well within tissue? Recent research indicates that could be a possibility. If further studies and clinical trials confirm this capability, then anatomic pathologists could gain another valuable tool to use in diagnosing cancers and other types of disease.
Currently, surgical pathologists use a variety of hematoxylin and eosin stains (H/E) to bring out useful features in cells and cell structures. So, staining tissue on glass slides is a common practice. Now, thanks to machine learning and artificial intelligence, anatomic pathologists may soon have a similar tool for spotting cancer cells within both tissue and blood samples.
Researchers at the National University of Singapore (NUS) have developed a method for identifying cancer that uses a pH sensitive dye called bromothymol blue. The dye reacts to various levels of acidity in cancer cells by turning colors. “The pH inside cancer cells tends to be higher than that of healthy cells. This phenomenon occurs at the very early phases of cancer development and becomes amplified as it progresses,” Labroots reported.
In “Machine Learning Based Approach to pH Imaging and Classification of Single Cancer Cells,” published in the journal APL Bioengineering, the NUS researchers wrote, “Here, we leverage a recently developed pH imaging modality and machine learning-based single-cell segmentation and classification to identify different cancer cell lines based on their characteristic intracellular pH. This simple method opens up the potential to perform rapid noninvasive identification of living cancer cells for early cancer diagnosis and further downstream analyses.”
According to an NUS news release, the bromothymol blue dye is “applied onto patients’ cells” being held ex vivo in cell culture dishes. The dye’s color changes depending on the acidity level of the cancer cells it encounters. Microscopic images of the now-visible cancers cells are taken, and a machine-learning algorithm analyzes the images before generating a report for the anatomic pathologist.
The NUS researchers claim the test can provide answers in about half an hour with 95% accuracy, Labroots reported.
“The ability to analyze single cells is one of the holy grails of health innovation for precision medicine or personalized therapy. Our proof-of-concept study demonstrates the potential of our technique to be used as a fast, inexpensive and accurate tool for cancer diagnosis,” said Lim Chwee Teck, PhD, NUS Society Professor and Director of NUS’ Institute for Health Innovation and Technology, in the NUS news release.
AI Cell Analysis versus Laborious Medical Laboratory Steps
By developing an AI-driven method, Professor Lim and the NUS team sought to improve upon time-consuming techniques for identifying cells that traditionally involve using florescent probes, nanoparticles, and labeling steps, or for cells to be fixed or terminated.
“Unlike other cell analysis techniques, our approach uses simple, inexpensive equipment, and does not require lengthy preparation and sophisticated devices. Using AI, we are able to screen cells faster and accurately,” Professor Lim told Labroots. “Furthermore, we can monitor and analyze living cells without causing any toxicity to the cells or the need to kill them.”
The new technique may have implications for cancer detection in tumor tissue as well as in liquid biopsies.
“We are also exploring the possibility of performing the real-time analysis on circulating cancer cells suspended in blood,” Professor Lim said in the NUS news release. “One potential application for this would be in liquid biopsy where tumor cells that escaped from a primary tumor can be isolated in a minimally-invasive fashion from bodily fluids such as blood.”
Diagnosing Cancer in Real Time
The NUS’ method requires more research and clinical studies before it could become an actual tool for anatomic pathologists and other cancer diagnosticians. Additionally, the NUS researchers acknowledged that the focus on only four cell lines (normal cells, benign breast tumor cells, breast cancer cells, and pancreatic cancer cells) limited their study, as did lack of comparison with conventional florescent pH indicators.
Still, the NUS scientists are already planning more studies to advance their concept to different stages of cell malignancy. They envision a “real-time” version of the technique to enable recognition of cells and fast separation of those that need to be referred to clinical laboratories for molecular testing and/or genetic sequencing.
Medical laboratory leaders may want to follow the NUS study. An inexpensive AI-driven method that can accurately detect and classify cancer cells based on pH within the cells is provocative and may be eventually become integrated with other cancer diagnostics.
Asian locales reacted swiftly to the threat of COVID-19 by leveraging lessons learned from previous pandemics and making use of serology testing in aggressive contact tracing
America’s healthcare leaders in government, hospitals, clinical pathology, and medical laboratories can learn important lessons from the swift responses to the early outbreaks of COVID-19 in countries like Taiwan and South Korea and in cities like Singapore and Hong Kong.
Strategies such as early intervention, commitment to tracing contacts of infected people within two hours, quarantines, and social distancing all contributed to significantly curtailing the spread of the latest coronavirus pandemic within their borders, The New York Times (NYT) reported.
Another response common to the efforts of these countries and cities was the speedy introduction of clinical laboratory tests for SARS-CoV-2, the novel coronavirus that causes coronavirus disease 2019 (COVID-19), supported by the testing of tens of thousands of people in the earliest stages of the outbreaks in their communities. And that preparation and experience is paying off as those countries and cities continue to address the spread of COVID-19.
‘We Look at SARS as the Dress Rehearsal’
“Maybe it’s because of our Asian context, but our community
is sort of primed for this. We will keep fighting, because isolation and
quarantine work,” Lalitha
Kurupatham, Deputy Director of the Communicable Diseases Division in
Singapore, told the NYT. “During peacetime, we plan for epidemics like
this.”
Clinical laboratory leaders and pathologists may recall that Hong Kong was the site of the 2003 severe acute respiratory syndrome (SARS) epidemic. About 8,096 people worldwide were infected, and 774 died from SARS, according to the World Health Organization (WHO). In Hong Kong, 299 died out of 1,755 cases. However, Singapore had just 238 cases and 33 deaths.
To what does Singapore attribute the country’s lower
COVID-19 infection/death rate today?
“We can look at SARS as the dress rehearsal. The experience was raw, and very, very visceral. And on the back of it, better systems were put in place,” Jeremy Lim, MD, Co-Director of the Leadership Institute for Global Health Transformation at the National University of Singapore, told TIME.
“It’s a mix of carrots and sticks that have so far helped us. The US should learn from Singapore’s response and then adapt what is useful,” Lim added.
Singapore Debuts Serology Testing for COVID-19 Tracking
As microbiologists and infectious diseases doctors know, serology tests work by identifying antibodies that are the sources of infection. In the case of COVID-19, these tests may have aided in the surveillance of people infected with the coronavirus.
This is one lesson the US is learning.
“CDC (Centers for Disease Control and Prevention) has developed two serological tests that we’re evaluating right now, so we can get an idea through surveillance what’s the extent of this outbreak and how many people really are infected,” Robert Redfield, MD, CDC Director, told STAT.
As of March 27, Singapore (located about 2,374 miles from
mainland China with a population of 5.7 million) had reported 732 COVID-19
cases and two deaths, while Hong Kong had reported 518 cases and four deaths.
According to Time, in its effort to battle and treat
COVID-19, Singapore took the following steps:
Clinical laboratory testing for COVID-19 of all
people presenting with “influenza-like” and pneumonia symptoms;
Contact tracing of each infected person,
including interviews, review of flight manifests, and police involvement;
Using locally developed test to find antibodies
after COVID-19 clears;
Ran ads on page one of newspapers urging people
with mild symptoms to see a doctor; and
Government paid $100 Singapore dollars per day to
quarantined self-employed people.
The Singapore government’s WhatsApp account shares updates on the coronavirus, and Singapore citizens acquire wearable stickers after having their temperature checked at building entrances, Wired reported. The article also noted teams of healthcare workers are kept separate in hospitals—just in case some workers have to be quarantined.
FREE Webinar | What Hospital and Health System Labs Need to Know About Operational Support and Logistics During the COVID-19 Outbreak Wednesday, April 1, 2020 @ 1PM EDT — Register Now
Meanwhile, in Hong Kong, citizens donned face masks and
pressured the government to respond to the COVID-19 outbreak. Officials subsequently
tightened borders with mainland China and took other action, the NYT reported.
Once the COVID-19 genetic sequence became available, national medical laboratory networks in Singapore, Hong Kong, and Japan developed their own diagnostic tests, reported The Lancet, which noted that the countries also expanded capacity for testing and changed financing systems, so people would not have to pay for the tests. In Singapore, the government pays for hospitalization as well, noted The Lancet.
Lessons Learned
The US has far less experience with pandemics, as compared to the Asian locales that were affected by the H1N1 influenza (Spanish Flu) of 1918-1920 and the H5N1 influenza (Avian Flu) of 1957-1958.
And, controversially, National Security Council (NSC) officials in 2018 discontinued the federal US Pandemic Response Unit, moving the NSC employees into other government departments, Associated Press reported.
According to the March 26 US Coronavirus Task Force’s televised
news conference, 550,000 COVID-19 tests have been completed nationwide and
results suggest 86% of those tested are negative for the disease.
The fast-moving virus and rapidly developing story are placing
medical laboratory testing in the global spotlight. Pathologists and clinical laboratory
leaders have a unique opportunity to advance the profession, as well as improving
the diagnosis of COVID-19 and the health of patients.