News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Immunocompromised Patients with COVID-19 May Remain Infectious for Much Longer than Previously Thought

Clinical laboratory professionals should note that one case study describes a COVID-positive cancer patient shedding infectious particles for five months, which is much longer than expected

Just when researchers start believing they understand COVID-19 infections, something happens that reveals there is still more to learn. These additional findings are relevant for clinical laboratory managers and pathologists because the new insights often may play a role in how SARS-CoV-2 results should be interpreted for individual patients.

Researchers recently described a case where, in February, a 71-year-old woman underwent surgery related to her 10-year battle with cancer. While she was in the hospital, she was found to be positive for the SARS-CoV-2 coronavirus, though she showed no respiratory or systemic symptoms. Nevertheless, the hospital isolated her and monitored the infection.

To everyone’s surprise, the patient remained positive for five months. She underwent 15 COVID-19 tests from various diagnostics companies, as well as receiving two doses of convalescent plasma therapy, but she remained positive for the coronavirus into June.

Researchers at the National Institute of Allergy and Infectious Diseases (NIAID) wanted to know why. They conducted a study on the woman, which they later published in the journal Cell, titled, “Prolonged Infectious SARS-CoV-2 Shedding from an Asymptomatic Immunocompromised Individual with Cancer.”

In their published study, they wrote, “Although it is difficult to extrapolate from a single individual, our data suggest that long-term shedding of infectious virus may be a concern in certain immunocompromised people. Given that immunocompromised individuals could have prolonged shedding and may not have typical symptoms of COVID-19, symptom-based strategies for testing and discontinuing transmission-based precautions, as recommended by the Centers for Disease Control and Prevention (CDC), may fail to detect whether certain individuals are shedding infectious virus.”

Clinical laboratory professionals and pathologists will find it significant that patients with major health conditions may be shedding viral material for weeks longer than originally thought. This is relevant because it may be prudent to COVID test patients who present with compromised immune systems, and who are asymptomatic, and then repeat that testing at appropriate intervals.

The graphic above taken from the NIAID study
The graphic above taken from the NIAID study shows how long it took for the SARS-CoV-2 coronavirus to clear the 71-year-old immunocompromised cancer patient’s system, and at which points the convalescent plasma doses were administered. (Graphic copyright: National Institute of Allergy and Infectious Diseases.)  

Immunocompromised Patients May Handle COVID-19 Differently

The NIAID researchers believe the reason the patient continued to shed infectious virus for so long was because she was immunocompromised. They wrote, “Many current infection control guidelines assume that persistently PCR-positive individuals are shedding residual RNA and not infectious virus, with immunocompromised people thought to remain infectious for no longer than 20 days after symptom onset. Here we show that certain individuals may shed infectious, replication-competent virus for much longer than previously recognized. Although infectious virus could be detected up to day 70, sgRNA, a molecular marker for active SARS-CoV-2 replication, could be detected up until day 105.”

In the United States, some three million people have compromised or weakened immune systems. This is a significant population, Science Alert reported.

“As the virus continues to spread, more people with a range of immunosuppressing disorders will become infected, and it’s more important to understand how SARS-CoV-2 behaves in those populations,” Vincent Munster, PhD, Chief, Virus Ecology Unit at the National Institute of Allergy and Infectious Diseases and co-author of the NIAID study, told Science Alert.

The NIAID study findings match knowledge about other coronaviruses. For example, Science Alert reported that immunocompromised people with Middle East Respiratory Syndrome (MERS) have been shown to shed common seasonal coronaviruses for up to a month following infection.

Asymptomatic Patients Are a Mystery

There is still much that is unclear about asymptomatic patients. A paper published in JAMA, titled, “Clinical Course and Molecular Viral Shedding Among Asymptomatic and Symptomatic Patients with SARS-CoV-2 Infection in a Community Treatment Center in the Republic of Korea,” questioned the viral load differences in patients who tested positive but had no symptoms compared to those who were symptomatic.

That study included 303 patients, of which 193 were symptomatic. During the course of the study, 21 of the asymptomatic patients developed symptoms, however, the viral load was similar in all of the patients, regardless of symptoms.

“Isolation of asymptomatic patients may be necessary to control the spread of SARS-CoV-2,” concluded the JAMA researchers. But how long should asymptomatic patients remain isolated?

Official Guidance Is Based on Symptoms

The CDC updated its guidelines for who should isolate and for how long in October. The guidelines cover:

  • People who have or had COVID-19 and had symptoms;
  • People who tested positive for COVID-19 but did not have symptoms;
  • People who either had severe symptoms of COVID-19 or who have a compromised immune system;
  • People who were exposed to COVID-19, and
  • People who have been reinfected.

Regarding those who are immunocompromised and had COVID-19, the CDC says they “may require testing to determine when they can be around others.”

In addition to noting that people who are immunocompromised may require additional testing, the CDC is also continuously updating its published list of people who are at risk for complications and severe illness if they contract COVID-19. However, as the NIAID study showed, even those with underlying medical conditions can be asymptomatic.

And as the NIAID researchers note, there is more to learn. “Understanding the mechanism of virus persistence and eventual clearance will be essential for providing appropriate treatment and preventing transmission of SARS-CoV-2 because persistent infection and prolonged shedding of infectious SARS-CoV-2 might occur more frequently. Because immunocompromised individuals are often cohorted in hospital settings, a more nuanced approach to testing these individuals is warranted, and the presence of persistently positive people by performing SARS-CoV-2 gRNA and sgRNA analyses on clinical samples should be investigated.”

SARS-CoV-2 Science Is Young

An additional takeaway for pathology lab professionals is the reminder that the scientific research surrounding the novel coronavirus that causes COVID-19 is very young. New insights and understanding will continue to emerge, probably for many years.

One reason why the development of vaccines for COVID-19 has been so quick is that it built on scientific knowledge of the first SARS outbreak and MERS. It’s interesting to note that both SARS and MERS are relatively new as well: SARS emerged in 2002 and MERS in 2012. Compared to a disease like HIV, which was first identified in 1959, scientists have only been working on these particular coronaviruses for a short period of time.

The NIAID study is yet another example of new knowledge and insights emerging about how SARS-CoV-2 infects individuals. Collectively, these findings make it challenging for medical laboratory professionals to stay current with everything relevant and associated with the proper interpretation of COVID-19 test results.

—Dava Stewart

Related Information:

Prolonged Infectious SARS-SoV-2 Shedding from an Asymptomatic Immunocompromised Individual with Cancer

Startling Case Study Finds Asymptomatic COVVID-19 Carrier Who Shed Virus for 70 Days

Shedding of Infectious Virus in Hospitalized Patients with Coronavirus Disease-2019 (COVID-19): Duration and Key Determinants

SARS-CoV-2: The Viral Shedding vs Infectivity Dilemma

Clinical Course and Molecular Viral Shedding Among Asymptomatic and Symptomatic Patients with SARS-CoV-2 Infection in a Community Treatment Center in the Republic of Korea

When You Can Be Around Others

People with Certain Medical Conditions

NAIAD: Coronaviruses

COVID Research Updates: Immune Responses to Coronavirus Persist Beyond Six Months

Boston University School of Medicine Study Finds Vitamin D May Help Patients Fight COVID-19 Infections, But Some Question These Conclusions

Clinical laboratory managers may want to follow the debate that surfaced shortly after publication of the study in a peer-reviewed journal, when editors of the journal issued concerns over the researchers’ claims

Virologists and medical laboratory scientists continue to investigate ways the SARS-CoV-2 coronavirus can be defeated using the body’s own defenses in conjunction with medical treatments and a possible vaccine. Now, researchers at the Boston University School of Medicine have discovered that higher levels of vitamin D in the blood may improve chances of recovering from a COVID-19 infection.

In their paper, titled, “Vitamin D Sufficiency, a Serum 25-Hydroxyvitamin D At Least 30 Ng/Ml Reduced Risk for Adverse Clinical Outcomes in Patients with COVID-19 Infection,” the Boston University researchers suggest that sufficient levels of Vitamin D may help reduce complications, illness intensity, and death among COVID-19 patients.

“This study provides direct evidence that Vitamin D sufficiency can reduce the complications, including the cytokine storm (release of too many proteins into the blood too quickly) and ultimately death from COVID-19,” Michael F. Holick, PhD, MD, Professor of Medicine, Physiology and Biophysics at Boston University School of Medicine and one of the authors of the study, told SciTechDaily.

Holick is well-known in the scientific community for his many published studies on Vitamin D. In 2018, Kaiser Health News and The New York Times published a retrospective on Holick and his advocacy on behalf of Vitamin D, titled, “The Man Who Sold America On Vitamin D—and Profited in the Process.” In that story, Holick acknowledged working as a consultant for several organizations, including Quest Diagnostics in a relationship that dates back to 1979. KHN and NYT noted that Quest Diagnostics performs Vitamin D tests.

The Boston University researchers published their study in PLOS ONE, a peer-reviewed open-access scientific journal published by the Public Library of Science (PLOS). The paper’s apparent conclusions, however, invoked an “expression of concern” from the journal’s editors, which, along with direct responses from the Boston University researchers, can be read on PLOS ONE.

Can Vitamin D Save Lives?

To perform their research, the Boston University researchers examined the Vitamin D levels of 235 patients who had been admitted to a hospital with a SARS-CoV-2 infection. The patients were then tracked for clinical outcomes, including:

  • severity of the infection,
  • becoming unconscious,
  • difficulty breathing,
  • hypoxia, and
  • death.

Blood samples were also analyzed for the number of lymphocytes and inflammatory markers. The researchers compared the collected data between patients who were sufficient to those who were deficient in Vitamin D levels.

They determined that patients over the age of 40 who were Vitamin D sufficient were 51.5% less likely to die from a COVID-19 infection than those who were deficient in the vitamin.

Michael F. Holick, PhD, MD
“Because Vitamin D deficiency and insufficiency is so widespread in children and adults in the United States and worldwide, especially in the winter months, it is prudent for everyone to take a vitamin D supplement to reduce risk of being infected and having complications from COVID-19,” Michael F. Holick, PhD, MD (above), told SciTechDaily. The Boston University School of Medicine professor and study author has been praising the health benefits of Vitamin D for years. He played a role in drafting national guidelines for the vitamin and also authored books that tout the advantages of Vitamin D, the importance of UV rays, and the biologic effects of light. (Photo copyright: Boston Herald.)

How Vitamin D Works and Why It’s So Important

In a fact sheet, the National Institutes of Health (NIH) recommend that adults between the ages of 19 and 70 take 15 micrograms (mcg) or 600 International Units (IU) of Vitamin D per day. Adults over the age of 70 should increase that amount to 20 mcg or 800 IUs per day.

According NBC News, Americans spent $936 million on supplements in 2017, which was nine times more than the previous decade. That article also stated that medical laboratory testing for Vitamin D levels have exponentially increased over the years. More than 10 million tests for Vitamin D levels were ordered for Medicare patients in 2016 at a cost of $365 million, which represents an increase of 547% since 2007. Currently, approximately one in four adults over the age of 60 in the US take Vitamin D supplements.

The NIH fact sheet notes that Vitamin D is a nutrient found in cells throughout the body and is needed for good health and to maintain strong bones. Individuals who are deficient in Vitamin D may develop soft, thin, brittle bones, as well as rickets in children and osteomalacia in adults. Vitamin D also helps the immune system fight off invading bacteria and viruses, helps nerves carry messages between the brain and other body parts, and helps muscles move. It can also play a role in warding off osteoporosis in older adults.

Very few foods naturally contain Vitamin D. The best dietary sources for the vitamin are fatty fish such as salmon, tuna, and mackerel, and foods fortified with Vitamin D, such as milks, some breakfast cereals, and yogurt. Being outside on sunny days is another way to obtain Vitamin D, as the body makes the vitamin when skin is directly exposed to the sun.

The Boston University study outlines the advantages of having sufficient Vitamin D levels, as well as how the vitamin may help ward off and possibly lessen the effects of infections like COVID-19, though those conclusions have been called into question.

Nevertheless, individuals who are deficient in the vitamin may want to take a supplement or get plenty of sunshine, just to be on the safe side. And clinical laboratory managers will want to keep in mind that over the years “the steady increase in physician and patient demand for Vitamin D tests has kept most clinical and pathology laboratories scrambling to maintain turnaround times and quality,” which Dark Daily reported in “Why Vitamin D Continues to Be the World’s Fastest-Growing Clinical Laboratory Test.”

—JP Schlingman

Related Information:

Vitamin D Sufficiency, a Serum 25-hydroxyvitamin D at Least 30 ng/mL Reduced Risk for Adverse Clinical Outcomes in Patients with COVID-19 Infection

Sufficient Levels of Vitamin D Significantly Reduces Complications, Death Among COVID-19 Patients

The Man Who Sold America On Vitamin D—and Profited in the Process

Low Levels of 25-Hydoxyitamin D Linked to COVID-19 Risk

Vitamin D: Fact Sheet for Health Professionals

Vitamin D: Fact Sheet for Consumers

Selling America on Vitamin D—and Reaping the Profits

Millions of Americans Take Vitamin D. Most Should Just Stop

Why Vitamin D Continues to Be the World’s Fastest-Growing Clinical Laboratory Test

Thirty US Congress Members Ask HHS To Send COVID-19 Testing Funds Directly to Clinical Laboratories

US Representatives want clinical laboratories to have better support for their increased efforts to expand testing for the coronavirus

On June 8, Congressmen Tom Reed (NY-23), Scott Peters (CA-52), and 28 other members of the US House of Representatives sent a letter to Secretary of the Department of Health and Human Services (HHS) Alex Azar requesting that funds from the Paycheck Protection Program and Health Care Enhancement Act (H.R.266) be sent directly to clinical laboratories that have heavily invested in increasing their COVID-19 testing capacity.

In their letter, the Representatives wrote, “As you are aware, the recently enacted Paycheck Protection Program and Health Care Enhancement Act (PPPHCE Act) invests $25 billion in the [Public Health and Social Services Emergency Fund (PHSSEF)], including $11 billion for states, localities, territories, and tribes, to enhance all aspects of COVID-19 testing capacity. This funding is in addition to the funds already appropriated to the PHSSEF under the CARES Act.

“While laboratories are eligible, along with other providers, for these funds,” they continued, “there have been no federal funds specifically designated for the laboratories that have stepped up in this public health crisis and have made significant investments to expand access to COVID-19 testing despite 40-60 percent reductions in regular commercial volume due to the economic lockdowns.

“As laboratories work to maintain their investments in critical resources for testing platforms, reagents, swabs, and PPE, as well as hiring, training, and overtime pay for the laboratory workforce, we urge HHS to direct a portion of funding that has not already been allocated towards these efforts. These funds will ensure that labs can continue to rapidly scale up diagnostic and antibody testing, particularly for healthcare workers, first responders, and other Americans on the frontlines of this pandemic,” concluded the Representatives.

ACLA President Made Similar Plea for Direct Funding to Clinical Laboratories

As Dark Daily reported in “Federal Government Is Sending Nearly $11 Billion to States for COVID-19 Clinical Laboratory Testing and Testing-Related Activities,” in April, Julie Khani, President of the American Clinical Laboratory Association (ACLA), sent a similar letter to Azar urging the HHS to provide some of the stimulus money directly to clinical laboratories.

“In order to deliver accurate, reliable results for patients at a national scale, we must allocate funding to support [clinical laboratories’] expanded efforts,” she said in a statement following an April 27 meeting at the White House.

In her letter, Khani wrote, “It is essential that HHS allocate $10 billion from the fund to support labs’ further expansion of testing capacity to fulfill the testing needs of all of the states and to protect the lives and livelihood of all Americans.

“Further,” she continued, “HHS should note that investing in the nation’s laboratories will not only enhance testing capacity in the short-term, but it also will allow the country to benefit from a robust testing infrastructure for the duration of the COVID-19 pandemic and beyond.”

President Trump signed H.R.266 into law on April 24. It includes $25 billion earmarked for research, development, validation, manufacturing, purchasing, administering, and expanding capacity for COVID-19 testing. According to the language of H.R.266, that includes, “tests for both active infection and prior exposure, including molecular, antigen, and serological tests, the manufacturing, procurement and distribution of tests, testing equipment and testing supplies, including personal protective equipment needed for administering tests, the development and validation of rapid, molecular point-of-care tests, and other tests, support for workforce, epidemiology, to scale up academic, commercial, public health, and hospital laboratories, to conduct surveillance and contact tracing, support development of COVID-19 testing plans, and other related activities related to COVID-19 testing.”

“As the demand for testing continues to grow, clinical laboratories need dedicated funding to plan for challenges that lie ahead. Strong federal coordination and leadership is essential, and we’re looking forward to working with HHS to ensure that laboratories have the resources necessary to continue to expand our role at the forefront of the nation’s response,” said Julie Khani (above), President of the American Clinical Laboratory Association (ACLA), in a press release following the June 8 letter sent to HHS by 30 members of Congress requesting funds from H.R.266 be sent directly to clinical laboratories. Khani will be speaking on federal policies now impacting clinical laboratories at the upcoming 25th annual Executive War College on Laboratory and Pathology Management in New Orleans on July 14-15. (Photo copyright: ACLA.)

Financial Struggles for Hospitals and Clinical Laboratories

This new round of stimulus funding comes at a time when many providers and clinical laboratories are struggling financially, despite the influx of COVID-19 patients.

“Across the country, laboratories have made significant investments to expand capacity, including purchasing new platforms, retraining staff, and managing the skyrocketing cost of supplies. To continue to make these investments and expand patient access to high-quality testing in every community, laboratories will need designated resources. Without sustainable funding, we cannot achieve sustainable testing,” said Khani in an ACLA statement.

As the COVID-19 coronavirus pandemic evolves, federal regulations, as well as emergency funding for COVID-19 testing that is provided by federal legislation, will evolve in unexpected ways. For that reason, clinical laboratory leaders will want to closely track announcements by such federal agencies as the Department of Health and Human Services, the Centers for Medicare and Medicaid Services, the Food and Drug Administration, the Centers for Disease Control and Prevention, and the Federal Emergency Management Administration as decisions are made about how to assign the $25 billion authorized in H.R.266 for “testing.”

—Stephen Beale

Related Information:

Reps. Reed and Peters Lead 28 House Members in Calling on HHS to Allocate Additional Federal Support to Clinical Laboratories for COVID-Testing

Reed Leads Members in Requesting More Widespread COVID-19 Testing

Amid Growing Demand for Testing, Lawmakers Call on HHS to Designate Resources for Clinical Laboratories

The Paycheck Protection Program and Health Care Enhancement Act: Summary of Key Health Provisions

H.R.266 – Paycheck Protection Program and Health Care Enhancement Act

Special Bulletin: HHS Announces How it Will Distribute Additional Funds to Providers Under CARES Act

What Clinical Diagnostic Laboratories and Manufacturers Need to Know about the CARES Act

Latest Updates on the CARES Act Public Health and Social Service Emergency Fund

Lab Test Volumes Plummet as Patients Put Off Care

COVID-19 Bonanza: Stimulus Hands Health Industry Billions Not Directly Related to Pandemic

$75B Relief Bill Provides ‘Much-Needed Lifeline’ to For-Profit Hospitals

7 Healthcare-Related Items You May Have Missed in the $2T Coronavirus Stimulus Package

Coronavirus Strains Cash-Strapped Hospitals, Could Cause Up to 100 to Close Within A Year

ACLA Statement on Expanding Access to Testing

ACLA Letter to HHS on PHSSEF Direct COVID19 Test Funding

Federal Government Is Sending Nearly $11 Billion to States for COVID-19 Clinical Laboratory Testing and Testing-Related Activities

US Works with Clinical Laboratories to Launch Several Large-Scale COVID-19 Serological Surveys to Track Undetected COVID-19 in the Nation’s Population

Though some experts claim widespread antibody testing is key to effective public health safety, the WHO warns positive serological tests may not indicate immunity from reinfection or transmission of SARS-CoV-2

It may be the largest program of clinical laboratory testing ever conducted in the United States. Health officials are preparing to undertake large-scale serological surveys (serosurveys) to detect and track previously undetected cases of SARS-CoV-2, the novel coronavirus, that causes the COVID-19 illness.

Microbiologists, epidemiologists, and medical laboratory leaders will be interested in these studies, which are aimed at determining how many adults in the US with no confirmed history of SARS-CoV-2 infection actually possess antibodies to the coronavirus.

Serological screening testing may also enable employers to identify employees who can safely return to their job. And researchers may be able to identify communities and populations that have been most affected by the virus.

Serological Study of COVID-19 Taking Place in Five States

In an interview with Science, Michael Busch, MD, PhD, Senior Vice President, Research and Scientific Affairs of Vitalant (formerly Blood Systems), one of the nation’s oldest and largest nonprofit community blood service providers, and Director of the Vitalant Research Institute, discussed several serological studies in which he is involved. The first study, which he said is being funded by the National Institutes of Health (NIH), is taking place in six metropolitan regions in the US: Seattle, New York City, San Francisco, Los Angeles, Boston, and Minneapolis.

The interesting twist in these studies is that they will test blood samples from people donating blood. In March, participating blood centers in each region started saving 1,000 donor samples per month. Six thousand samples will be assessed monthly for a six-month period using an antibody testing algorithm that enables researchers to monitor how people develop SARS-CoV-2 antibodies over time.

Busch told Science this regional study will evolve into three “national, fully representative serosurveys of the US population using blood donors.” This particular national serosurvey will study 50,000 donations in September and December of 2020 and in November 2021.

“We’re going to be estimating overall antibody prevalence to SARS-CoV-2 within each state, but also map it down within the states to regions and metropolitan urban areas, and look at the differences,” Busch told Science, which called the serosurvey “unprecedented.”

“It’s certainly the largest serosurvey I’ve ever been involved with,” Busch said.

Serological versus PCR Testing for COVID-19

Unlike polymerase-chain-reaction (PCR)-based COVID-19 diagnostic testing, which uses nasopharyngeal swabs to detect the presence of viral RNA, serological testing such as LabCorp’s 164055 IgG test looks for the presence of SARS-CoV-2 antibodies in blood samples. A positive test indicates a previous infection.

In the third NIH serosurvey, according to Busch, NIH blood-donor serosurveys will be compared with results from population serosurveys taking place through the University of Washington and University of California San Francisco, which involve neighborhood door knocking and sampling from hematology labs.

“An antibody test is looking back into the immune system’s history with a rearview mirror,” said Matthew J. Memoli, MD (above,) an infection disease specialist with the NIH and Director of the National Institute of Allergy and Infectious Diseases (NIAID), in a news release. “By analyzing an individual’s blood, we can determine if that person has encountered SARS-CoV-2 previously.” (Photo copyright: National Institutes of Health.)

Some of the SARS-CoV-2 serological surveys underway include:

  • The National Institutes of Health serosurvey involving as many as 10,000 adults in the US who have no confirmed history of infection with SARS-CoV-2, which will analyze blood samples for two types of antibodies—anti-SARS-CoV-2 protein IgG and IgM. Researchers also may perform additional tests to evaluate volunteers’ immune responses to the virus.
  • A World Health Organization (WHO) coordinated follow-up study to its Solidarity Trial named Solidarity 2, which will “pool data from research groups in different countries to compare rates of infection,” which WHO officials say is ‘critical’ to understanding the true extent of the pandemic and to inform policy, Research Professionals News reported.
  • In Germany, the Robert Koch Institute, the country’s disease control and prevention agency, is tackling Europe’s first large-scale COVID-19 antibody testing. Its three-phase study will include serological testing on blood from donation centers, followed by testing on blood samples from coronavirus regional hotspots and then the country’s broader population.

But Can Serological Testing Prove Immunity to COVID-19?

Dark Daily previously reported on the critical role serology testing played in Singapore to help officials use contact tracing to identify people involved in COVID-19 outbreaks. (See, “Asian Cities, Countries Stand Out in the World’s Fight Against COVID-19, US Clinical Laboratory Testing in the Spotlight,” March 30, 2020.)

However, whether having COVID-19 antibodies will make people immune to reinfection or unable to spread the disease is not yet known.

“We don’t have nearly the immunological or biological data at this point to say that if someone has a strong enough immune response that they are protected from symptoms, … that they cannot be transmitters,” Michael Mina, MD, PhD, Assistant Professor of Epidemiology at Harvard’s T.H. Chan School of Public Health and Associate Medical Director in Clinical Microbiology (molecular diagnostics) in the Department of Pathology at Brigham and Women’s Hospital, told STAT.

The Times of Sweden reported the WHO warned in mid-April that there is no proof recovering from COVID-19 provides immunity.

“There are a lot of countries that are suggesting using rapid diagnostic serological tests to be able to capture what they think will be a measure of immunity,” said Maria Van Kerkhove, PhD, the WHO’s Technical Lead for COVID-19, at a news conference in Geneva, Switzerland, the Times of Sweden reported.

“Right now, we have no evidence that the use of a serological test can show that an individual has immunity or is protected from reinfection,” she said, adding, “These antibody tests will be able to measure that level of seroprevalence—that level of antibodies—but that does not mean that somebody with antibodies [is] immune.”

In addition, the reliability and quality of some serological tests produced in China, as well as some being manufactured in the US, have come into question, the Financial Times reported.

Nevertheless, as serological testing for COVID-19 becomes more widespread, clinical laboratories should plan to play an ever-increasing role in the battle to stop a second wave of the epidemic in this country.

—Andrea Downing Peck

Related Information:

Unprecedented Nationwide Blood Studies Seek to Track U.S. Coronavirus Spread

WHO Marshalls Global Study of Coronavirus Infection

Population-based Age-stratified Seroepidemiological Investigation Protocol for COVID-19 Virus Investigation

How Many People Are Immune to the New Corona Virus? Robert Koch Institute Starts Nationwide Antibody Studies

Everything We Know About Coronavirus Immunity and Antibodies–and Plenty We Still Don’t

The WHO Warns ‘No Evidence’ of Immunity to Corona Virus for Recovered Patients

Quest for Accurate Antibody Tests in Fight Against COVID-19

Asian Cities, Countries Stand Out in the World’s Fight Against COVID-19, US Clinical Laboratory Testing in the Spotlight

Two Boston Health Systems Enter the Growing Direct-to-Consumer Gene Sequencing Market by Opening Preventative Genomics Clinics, but Can Patients Afford the Service?

By offering DTC preventative gene sequencing, hospital leaders hope to help physicians better predict cancer risk and provide more accurate diagnoses

Two Boston health systems, Brigham and Women’s Hospital and Massachusetts General Hospital (MGH), are the latest to open preventative gene sequencing clinics and compete with consumer gene sequencing companies, such as 23andMe and Ancestry, as well as with other hospital systems that already provide similar services.

This may provide opportunities for clinical laboratories. However, some experts are concerned that genetic sequencing may not be equally available to patients of all socioeconomic classes. Nor is it clear how health systems plan to pay for the equipment and services, since health insurance companies continue to deny coverage for “elective” gene sequencing, or when there is not a “clear medical reason for it, such as for people with a long family history of cancer,” notes STAT.

Therefore, not everyone is convinced of the value of gene sequencing to either patients or hospitals, even though advocates tout gene sequencing as a key element of precision medicine.

Is Preventative Genetic Sequencing Ready for the Masses?

Brigham’s Preventive Genomics Clinic offers comprehensive DNA sequencing, interpretation, and risk reporting to both adults and children. And MGH “plans to launch its own clinic for adults that will offer elective sequencing at a similar price range as the Brigham,” STAT reported.

The Brigham and MGH already offer similar gene sequencing services as other large health systems, such as Mayo Clinic and University of California San Francisco (UCSF), which are primarily used for research and cancer diagnoses and range in price depending on the depth of the scan, interpretation of the results, and storage options.

However, some experts question whether offering the technology to consumers for preventative purposes will benefit anyone other than a small percentage of patients.

“It’s clearly not been demonstrated to be cost-effective to promote this on a societal basis,” Robert Green, MD, MPH, medical geneticist at Brigham and Women’s Hospital, and professor of genetics at Harvard, told STAT. “The question that’s hard to answer is whether there are long-term benefits that justify those healthcare costs—whether the sequencing itself, the physician visit, and any downstream testing that’s stimulated will be justified by the situations where you can find and prevent disease.”

Additionally, large medical centers typically charge more for genomic scans than consumer companies such as 23andMe and Ancestry. Hospital-based sequencing may be out of the reach of many consumers, and this concerns some experts.

“The idea that genomic sequencing is only going to be accessible by wealthy, well-educated patrons who can pay out of pocket is anathema to the goals of the publicly funded Human Genome Project,” Jonathan Berg, MD, PhD, Genetics Professor, University of North Carolina at Chapel Hill, told Scientific American.

Nevertheless, consumer interest in preventative genetic sequencing is increasing and large health systems want a piece of the market. At the same time, genetics companies are reducing their costs and passing that reduction on to their customers. (See Dark Daily, “Veritas Genetics Drops Its Price for Clinical-Grade Whole-Genome Sequencing to $599, as Gene Sequencing Costs Continue to Fall,” October 23, 2018.)

Providers Go Direct to Consumers with Gene Sequencing

Healthcare providers and clinical laboratories played an important part in the growth of the Direct-to-Consumer (DTC) genetic testing, a market which the American Hospital Association (AHA) predicts is on track to expand dramatically over the next decade. BIS Research foresees a $6.3 billion valuation of the DTC genetic test market by 2028, according to a news release.

And, according to the American Journal of Managed Care, “It’s estimated that by 2021, 100 million people will have used a direct-to-consumer (DTC) genetic test. As these tests continue to gain popularity, there is a need for educating consumers on their DTC testing results and validating these results with confirmatory testing in a medical-grade laboratory.”

This is why it’s critical that clinical laboratories and anatomic pathology groups have a genetic testing and gene sequencing strategy, as Dark Daily reported.

David Bick, MD, Chief Medical Officer at the HudsonAlpha Institute for Biotechnology and Medical Director of the Smith Family Clinic for Genomic Medicine, told Scientific American, “there’s just more and more interest from patients and families not only because of 23andMe and the like, but because there’s just this understanding that if you can find out information about your health before you become sick, then really our opportunity as physicians to do something to help you is much greater.”

In an article he penned for Medium, Robert Green, MD, MPH (shown above counseling a patient), medical geneticist at Brigham and Women’s Hospital and professor of genetics at Harvard, wrote, “The ultimate aim of our Genomes2People Research Program is to contribute to the transformation of medicine from reactive to proactive, from treatment-oriented to preventive. We are trying to help build the evidence base that will justify societal decision to make these technologies and services accessible to anyone who wants them, regardless of means, education or race and ethnicity.” (Photo copyright: Wall Street Journal.)

Is Preventative Genomics Elitist?

As large medical centers penetrate the consumer genetic testing market some experts express concerns. In a paper he wrote for Medium, titled, “Is Preventive Genomics Elitist?” Green asked, “Is a service like this further widening the inequities in our healthcare system?”

Green reported that while building the Preventive Genomics Clinic at Brigham, “we … struggled with the reality that there is no health insurance coverage for preventive genomic testing, and our patients must therefore pay out of pocket. This is a troubling feature for a clinic at Brigham and Women’s Hospital, which is known for its ties to communities in Boston with diverse ethnic and socioeconomic backgrounds.”

Most of Brigham’s early genetics patients would likely be “well-off, well-educated, and largely white,” Green wrote. “This represents the profile of typical early adopters in genetic medicine, and in technology writ large. It does not, however, represent the Clinic’s ultimate target audience.”

More Data for Clinical Laboratories

Nevertheless, preventive genomics programs offered by large health systems will likely grow as primary care doctors and others see evidence of value.

Therefore, medical laboratories that process genetic sequencing data may soon be working with growing data sets as more people reach out to healthcare systems for comprehensive DNA sequencing and reporting.

—Donna Marie Pocius

Related Information:

Top U.S. Medical Centers Roll Out DNA Sequencing Clinics for Healthy Clients

Brigham and Women’s Hospital Opens Preventive Genomics Clinic

Preventive Genomics for Healthy People

Consumers Buy into Genetic Testing Kits

Direct-to-Consumer Genetic Testing Market to Reach $6.36 Billion by 2028

Is Preventive Genomics Elitist?

Why It’s Time for All Clinical Laboratories and Anatomic Pathology Groups to Have a Genetic Testing and Gene Sequencing Strategy

More Clinical Laboratories and Genetic Testing Companies Are Sharing Gene Sequencing Data That Involve Variations

Veritas Genetics Drops Its Price for Clinical-Grade Whole-Genome Sequencing to $599, as Gene Sequencing Costs Continue to Fall

;