News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Healthcare Strikes Around the World Challenge Pay and Poor Working Conditions

Millions of cancelled healthcare appointments and lengthy waits for care abound in UK, New Zealand, and in the US

Strikes continue on multiple continents as thousands of healthcare workers walk off the job. Doctors, medical laboratory scientists, nurses, phlebotomists and others around the world have taken to the picket lines complaining about low wages, inadequate staffing, and dangerous working conditions.

In England, junior doctors (the general equivalent of medical interns in the US) continue their uphill battle to have their complaints heard by the UK government. As a result, at hospitals and clinics throughout the United Kingdom, more than one million appointments have been cancelled due to strikes, according to the BBC.        

“The true scale of the disruption is likely to be higher—many hospitals reduce bookings on strike days to minimize last-minute cancellations,” the BBC reported. “A total of one million hospital appointments have had to be rescheduled along with more than 60,000 community and mental health appointments since December [2022], when industrial action started in the National Health Service (NHS).”

According to The Standard, “Consultants in England are to be re-balloted over the prospect of further strike action as doctors and the government remain in talks with a view to end the dispute. The British Medical Association (BMA) said that specialist, associate specialist, and specialty (SAS) doctors will also be balloted over potential strike action.”

Ujjwala Anand Mohite, DRCPath, FEBPath

“We must be prepared to take the next step and ballot for industrial action if we absolutely have to—and we will do this … if upcoming negotiations fail to achieve anything for our profession,” Ujjwala Anand Mohite, DRCPath, FEBPath (above), a histopathologist at the NHS, Dudley Group of Hospitals, and the first female Chair of the SAS committee UK, told The Guardian.

New Zealand Doctors, Clinical Laboratory Workers Strike

In September, the first-ever nationwide senior doctor strike occurred in New Zealand and was then followed by another strike of about 5,000 doctors and 100 dentists from New Zealand’s public hospitals, the World Socialist Web Site reported.

Similar to the UK, the strikes reflect mounting frustration over pay not keeping up with inflation and “decades of deteriorating conditions in the public health system,” the WSWS noted.

This follows months of strikes by the island nation’s medical laboratory workers, which are ongoing.

In “Medical Laboratory Workers Again on Strike at Large Clinical Laboratory Company Locations around New Zealand,” Dark Daily covered how medical technicians, phlebotomists, and clinical laboratory scientists in New Zealand were going on strike for fairer pay in various areas around the country. Their complaints mirror similar complaints by healthcare and clinical laboratory workers in the US.

“Our pay scales, if you compare them internationally, are not competitive. About half of our specialists come from abroad, so it’s quite important for the country’s health system to be able to attract and keep people,” Andy Davies, a lung specialist who joined the picket outside 484-bed Wellington Hospital, told the WSWS.  

“We’re not asking for the world, we’re asking for an inflationary pay rise, and we haven’t had an inflationary pay rise year-on-year, and it’s beginning to show,” he added.

“What type of health system do they want?” he continued. “Do we want one that treats all people and manages what they need, or do we want a hacked down system that does less?”

The conflicts over pay and working conditions have caused many healthcare workers in New Zealand to leave the field entirely. This has led to severe shortages of qualified workers.

“Patient waiting times—for cancer, hip replacements, cardiac problems, and many other conditions—have exploded due to understaffed and overwhelmed hospitals,” the WSWS reported.

US Healthcare Workers also Striking

The US has its share of striking healthcare workers as well. Healthcare Dive tracked 23 ongoing or anticipated strikes throughout the nation’s healthcare industry since January 1, 2023. In 2022, there were 15 strikes of healthcare workers at the nation’s hospitals and health systems.

These walkouts include doctors, nurses, pharmacy workers, imaging specialists, and thousands of frontline healthcare workers striking over dangerously low staffing levels, unsafe working conditions, and low pay.

In October, 75,000 nurses, support staff, and medical technicians from Kaiser Permanente participated in a 72-hour strike comprised of hundreds of hospitals and clinics throughout California, Washington state, Oregon, Virginia, and the District of Columbia, Reuters reported.

The three-day strike, “Marked the largest work stoppage to date in the healthcare sector,” Reuters noted. Doctors, managers, and contingency workers were employed to keep hospitals and emergency departments functioning.

“The dispute is focused on workers’ demands for better pay and measures to ease chronic staff shortages and high turnover that union officials say has undermined patient care at Kaiser,” Reuters stated.

Staffing shortages following the COVID-19 pandemic are partly to blame for current struggles, but contract staffing to fill critical positions has exacerbated the problem.

“Kaiser’s outsourcing of healthcare duties to third-party vendors and subcontractors has also emerged as a major sticking point in talks that have dragged on for six months. … The clash has put Kaiser Permanente at the forefront of growing labor unrest in the healthcare industry—and across the US economy—driven by the erosion of workers’ earning power from inflation and pandemic-related disruptions in the workforce,” Reuters noted.

Across the globe, many healthcare workers—including clinical laboratory scientists in countries like New Zealand—are feeling burnt out from working in understaffed departments for inadequate pay. Hopefully, in response to these strikes, governments and healthcare leaders can come to resolutions that bring critical medical specialists back to work.

—Kristin Althea O’Connor

Related Information:

Junior Doctors in England to Hold Strike Talks with Government

NHS Strikes: More than a Million Appointments Cancelled in England

England’s National Health Service Operates on Holiday-Level Staffing as Doctors’ Strike Escalates

New Zealand Doctors Hold Second Strike

Strike Talks Continue Between BMA and Government as Doctors Decide on Next Steps

Why Health Care Workers Are Striking

US Healthcare Workers Walk Off the Job: 22 Strikes in 2023

Tracking Healthcare Worker Strikes

Kaiser Permanente Resumes Talks with Healthcare Workers Union Week after Strike

Medical Laboratory Workers Again on Strike at Large Clinical Laboratory Company Locations around New Zealand

Private Healthcare on Rise as Britain’s Public Healthcare System Faces Horrific Conditions, Walkouts

Challenges abound as the NHS tries to recover before UK citizens move to private insurance; some patients have wait times of up to six months for a histopathology diagnosis of cancer

Britain’s National Health Service (NHS) is in dire straits. The UK’s vaunted state-run healthcare system is overrun with appallingly poor conditions, impossibly long wait times, diminished care, and multiple walk-outs in various medical fields that Dark Daily reported on last week in “British Junior Doctors Stage Four-Day Walkout Demanding Increased Pay and Better Working Conditions.”

As we noted, thousands of clinical laboratory tests and surgical pathology readings had to be delayed or cancelled due to the strikes.

An NHS worker in a Liverpool hospital told CNN that conditions felt like a “war zone” with patients being treated in the backs of ambulances, corridors, waiting rooms, cupboards, or not at all since hospitals are well over capacity.

As a result, UK residents are increasingly bypassing the long wait times for the NHS’ “free” healthcare and instead paying out of pocket for private health insurance, CNN reported in “Why is Britain’s Health Service, a Much-loved National Treasure, Falling Apart?

Chris Thomas

“Those who can afford to get private insurance are,” Chris Thomas (above), told The Guardian. Thomas is Head of the Commission on Health and Prosperity for UK progressive policy think tank the Institute for Public Policy Research (IPPR). “People are not opting out of the NHS because they have stopped believing in it as the best and fairest model of healthcare,” he said. “Rather, those who can afford it are being forced to go private … and those without the funds are left to ‘put up or shut up.’” (Photo copyright: Institute for Public Policy Research.)

Two-Tier System Could Become UK’s Norm, Dividing Classes

The drive towards private insurance is leaving Britain on the brink of having a “two-tier” system where the NHS is overpowered by private healthcare. And it’s not an unwarranted fear. One in six people in Britain are prepared to use private healthcare instead of waiting for the NHS, The Guardian reported.

A report from the Institute for Public Policy Research (IPPR) claims a UK two-tiered system would not mimic what we have here in the US. Rather, if the trend continues in the private direction, it would more likely be comparable to dentistry in England, “… where poor NHS access exists for some and superior but expensive access exists for many. We stand at the precipice of a growing ‘opt-out’ by those who can,” according to the IPPR report, The Guardian noted.

More importantly, this could further divide classes. “Such a trend could threaten the deep and widespread public support for the NHS among voters and leave millions of patients vulnerable because of their ethnicity, postcode, income or job,” The Guardian noted the IPPR report as saying.

In an op-ed she penned for CNN, titled, “We Can Barely Breathe. How Did Britain’s Treasured NHS Get So Sick?” Internal Medicine Junior Doctor for NHS in South East England, Roopa Farooki, MD, described the conditions her son witnessed when he arrived at her ER with a shoulder injury on one of her days off.

“It’s different when you see your everyday reality though naïve eyes. He saw the elderly patients on the jigsaw of trolleys crammed into the department, pushed against the wall, squeezed in the gap between the bed and nursing stations.

“He saw the fluids hanging from rails where we had no stands, lines running into the patient’s forearms. He saw the oxygen fed into their noses from cylinders propped along the bed, the cacophony of beeping machines and alarms.

“It doesn’t look like it does on the TV. It doesn’t even look like it does on reality TV,” she wrote.

The healthcare statistics are alarming. According to CNN:

  • There was a 20% increase in excess deaths the final week of December 2022, compared to the previous five years.
  • Half of patients waiting for emergency care that month waited for more than four hours, which was a record.
  • Also in December, 54,000 people waited more than 12 hours for emergency admission. The wait was “virtually zero” prior to the COVID-19 pandemic.
  • And “category 2” conditions, such as a stroke or heart attack, had a more than 90-minute wait time for ambulance attendance. The target response time is 18 minutes.

Dim Hopes for Improvement

Though the NHS has struggled in recent years, the challenges are seemingly worse now. “This time feels different. It’s never been as bad as this,” gastroenterologist Peter Neville, MD, a consultant physician who worked with the NHS since 1989, told CNN.

CNN noted that a perfect storm of challenges might have brought the NHS to where it is today. COVID-19, flu seasons paired with COVID, lack of financial support, lack of social support, staffing and morale issues are just some of the problems that the NHS must address.

Experts point out that as the NHS’ struggles increase so begins a loop where one problem feeds another. Patients who wait to be seen have treatments that take longer, then they get sicker, and the cycle continues.

Despite having one of the highest proportions of government healthcare spending on Earth, up to 40% of Britons report having accessed or plan to access private care, Breitbart reported.

Sadly, it’s unlikely enough cash will come in from the UK government to make significant improvements for the NHS. The budget announcement in November showed the NHS was to get an average 2% spending increase over the next two years, CNN reported.

Are there lessons here for US hospitals, clinical laboratories, and pathology groups? Perhaps. It’s always instructive to see how our fellow healthcare providers across the pond respond to public pressure for more access to quality care.

—Kristin Althea O’Connor

Related Information:

Why is Britain’s Health Service, a Much-Loved National Treasure, Falling Apart

Private Healthcare Boom Adds to Fears of Two-Tier System in UK

IPPR Report: The State Of Health and Care 2022

Opinion: ‘We Can Barely Breathe,’ How did Britain’s Treasured NHS Get So Sick?

Britons Flock to Private Doctors as Socialized Healthcare Fails to Deliver on Time

British Junior Doctors Stage Four-Day Walkout Demanding Increased Pay and Better Working Conditions

England’s National Health Service to Offer Widespread Rapid Whole Genome Sequencing for Children and Babies

Research in the UK and US into how rapid WGS can prevent deaths and improve outcomes for kids with rare genetic diseases may lead to more genetic testing based in local clinical laboratories

Genetic scientists with the National Health Service (NHS) in England have embarked on an ambitious plan to offer rapid whole genome sequencing (rWGS) for children and babies with serious illnesses, as part of a larger initiative to embrace genomic medicine in the United Kingdom (UK).

The NHS estimates that the plan will benefit more than 1,000 children and babies each year, including newborns with rare diseases such as cancer, as well as kids placed in intensive care after being admitted to hospitals. Instead of waiting weeks for results from conventional tests, clinicians will be able to administer a simple blood test and get results within days, the NHS said in a press release.

The press release notes that about 75% of rare genetic diseases appear during childhood “and are responsible for almost a third of neonatal intensive care deaths.”

Here in the United States, pathologists and clinical laboratory managers should see this development as a progressive step toward expanding access to genetic tests and whole genome sequencing services. The UK is looking at this service as a nationwide service. By contrast, given the size of the population and geography of the United States, as this line of medical laboratory testing expands in the US, it will probably be centered in select regional centers of excellence.

The NHS laid out its implementation plan in a strategy paper published on NHS England’s website titled, “Accelerating Genomic Medicine in the NHS.”

“This strategy sets out how more people will be empowered to take preventative action following risk-based predictions, receive life-changing diagnoses, and get the support needed to live with genomically-informed diagnoses alongside improved access to cutting-edge precision [medicine] treatments. It also outlines how the NHS will accelerate future high-quality genomic innovation that can be adopted and spread across the country, leading to positive impacts for current and future generations,” the NHS wrote.

Amanda Pritchard

“This global first is an incredible moment for the NHS and will be revolutionary in helping us to rapidly diagnose the illnesses of thousands of seriously ill children and babies—saving countless lives in the years to come,” said NHS chief executive Amanda Pritchard (above) in a press release announcing the program. (Photo copyright: Hospital Times.)

New Rapid Whole Genome Sequencing Service

The NHS announced the plan following a series of trials last year. In one trial, a five-day old infant was admitted to a hospital in Cheltenham, Gloucester, with potentially deadly levels of ammonia in his blood. Whole genome sequencing revealed that changes in the CPS1 gene were preventing his body from breaking down nitrogen, which led to the spike in ammonia. He was given life-saving medication in advance of a liver transplant that doctors believed would cure the condition. Without the rapid genetic test, doctors likely would have performed an invasive liver biopsy.

Following sample collection at NHS locations, the genetic tests will be performed at the new National Rapid Whole Genome Sequencing Service, part of the South West NHS Genomic Laboratory Hub run by the Royal Devon University Healthcare NHS Foundation Trust in Exeter, UK.

Using a simple blood test, the new newborn genetic screening service in England is expected to benefit more than 1,000 critically ill infants each year, potentially saving their lives. “The rapid whole genome testing service will transform how rare genetic conditions are diagnosed,” explained Emma Baple, PhD, Professor of Genomic Medicine at University of Exeter Medical School and leader of the National Rapid Whole Genome Sequencing Service in the press release. “We know that with prompt and accurate diagnosis, conditions could be cured or better managed with the right clinical care, which would be life-altering—and potentially life-saving—for so many seriously unwell babies and children,” Precision Medicine Institute reported.

According to The Guardian, test results will be available in two to seven days.

Along with the new rWGS testing service, the NHS announced a five-year plan to implement genomic medicine more broadly. The provisions include establishment of an ethics advisory board, more training for NHS personnel, and an expansion of genomic testing within the existing NHS diagnostic infrastructure. The latter could include using NHS Community Diagnostics centers to collect blood samples from family members to test for inherited diseases.

UK’s Longtime Interest in Whole Genome Sequencing

The UK government has long been interested in the potential role of WGS for delivering better outcomes for patients with genetic diseases, The Guardian reported.

In 2013, the government launched the 100,000 Genomes Project to examine the usefulness of the technology. In November 2021, investigators with the project reported the results of a large pilot study in which they analyzed the genomes of 4,660 individuals with rare diseases. The study, published in the New England Journal of Medicine (NEJM) titled, “100,000 Genomes Pilot on Rare-Disease Diagnosis in Health Care—Preliminary Report,” found “a substantial increase in yield of genomic diagnoses made in patients with the use of genome sequencing across a broad spectrum of rare disease.”

The study’s findings suggest that use of WGS “could save the NHS millions of pounds,” The Guardian reported.

Whole Genome Sequencing System for Newborns in the US

Researchers in the United States are also looking at the potential for WGS to improve health outcomes in children with genetic conditions. Last August, a research team led by Stephen F. Kingsmore, MD, DSc, President/CEO of Rady Children’s Institute for Genomic Medicine in San Diego, authored a study published in the American Journal of Human Genetics (AJHG) titled, “A Genome Sequencing System for Universal Newborn Screening, Diagnosis, and Precision Medicine for Severe Genetic Diseases,” that described a scalable prototype for a newborn screening system.

“This NBS-rWGS [newborn screening by rapid whole genome sequencing] system is designed to complement the existing newborn screening process and has the potential to eliminate the diagnostic and therapeutic odyssey that many children and parents face,” Kingsmore said in a press release. “Currently, only 35 core genetic disorders are recommended for newborn screening in the United States, but there are more than 7,200 known genetic diseases. Outcomes remain poor for newborns with a genetic disease because of the limited number of recommended screenings. With NBS-rWGS, we can more quickly expand that number and therefore potentially improve outcomes through precision medicine.”

A more recent 2023 study which examined 112 infant deaths at Rady Children’s Hospital found that 40% of the babies had genetic diseases. In seven infants, genetic diseases were identified post-mortem, and in five of them “death might have been avoided had rapid, diagnostic WGS been performed at time of symptom onset or regional intensive care unit admission,” the authors wrote.

“Prior etiologic studies of infant mortality are generally retrospective, based on electronic health record and death certificate review, and without genome information, leading to underdiagnosis of genetic diseases,” said Christina Chambers, PhD, co-author of the study, in a press release. “In fact, prior studies show at least 30% of death certificates have inaccuracies. By implementing broad use of genome sequencing in newborns we might substantially reduce infant mortality.” 

Pioneering work with whole genome sequencing for newborns, such as that being conducted by the clinical laboratory and genetic teams at Rady Children’s Hospital and the UK’s NHS, could allow doctors to make timely interventions for our most vulnerable patients.

—Stephen Beale

Related Information:

Study Suggests DNA Sequencing Could Reduce Infant Deaths, Often Caused by Genetic Disease

Novel Newborn Screening System Uses Rapid Whole Genome Sequencing and Acute Management Guidance to Screen and Diagnosis Genetic Diseases

Study Finds Association of Genetic Disease and Infant Mortality Higher than Previously Recognized: 41% of Infant Deaths Associated with Genetic Diseases

Genome Sequencing Could Prevent Infant Deaths

A Genome Sequencing System for Universal Newborn Screening, Diagnosis, and Precision Medicine for Severe Genetic Diseases

Genetic Testing in the PICU Prompts Meaningful Changes in Care

Major Policy Event in United Kingdom Aligns National Genetic Screening Program Using Rapid Whole Genome Sequencing

World-First National Genetic Testing Service to Deliver Rapid Life-Saving Checks for Babies and Kids

Genome Sequencing Trial to Test Benefits of Identifying Genetic Diseases at Birth

New NHS Genetic Testing Service ‘Could Save Thousands of Children’ in England

NHS England Completes Move Towards Rapid Whole Genome Sequencing of All Critically Ill Infants

Whole Genome Sequencing for Children: An Information Guide for Parents, Carers, and Families

Medical and Non-medical Laboratories in UK and Europe Hit by Rising Costs and Supply Shortages Due to High Demand for Testing Services

Supply chain shortages involving clinical laboratory products may not ease up any time soon, as China’s largest shipping province is once again in COVID-19 lockdown

Following two years of extremely high demand, pathology laboratories as well as non-medical labs in the United Kingdom (UK) and Europe are experiencing significant shortages of laboratory resources as well as rising costs. That’s according to a recently released survey by Starlab Group, a European supplier of lab products.

In its latest annual “mood barometer” survey of around 200 lab professionals in the UK, Germany, Austria, Italy, and France, Starlab Group received reports of “empty warehouses” and a current shortage of much needed lab equipment, reportedly as a result of rising costs, high demand, and stockpiling of critical materials needed by pathology laboratories during the COVID-19 pandemic, according to Laboratory News.

The survey respondents, who represented both medical laboratories and research labs, noted experiencing more pressure from staff shortages and insufficient supplies required to meet testing demands in 2021 as compared to 2020. For example, only 23% of respondents said they had enough liquid handling materials—such as protective gloves and pipettes—in 2021, down from 39% who responded to the same question in 2020.

“The entire laboratory industry has been in a vicious circle for two years. While more and more materials are needed, there’s a lack of supplies. At the same time, laboratories want to stockpile material, putting additional pressure on demand, suppliers, and prices,” Denise Fane de Salis, Starlab’s UK Managing Director and Area Head for Northern Europe, told Process Engineering. “Institutes that perform important basic work cannot keep up with the price competition triggered by COVID-19 and are particularly suffering from this situation,” she added.

Denise Fane de Salis

“COVID-19 is the largest, but by no means the only challenge facing Europe’s laboratories,” Denise Fane de Salis (above), Starlab’s UK Managing Director and Area Head for Northern Europe, told Laboratory News. “The mood barometer we commissioned once again clearly shows that we need to look at the entire range of laboratory work. The laboratory sector is not only essential in medicine and research. Diagnostics have long since encompassed almost all areas of life and the economy.” Those in this country responsible for clinical laboratory supply chains should consider what Salis is advising. (Photo copyright: Starlab UK.)

Lab Supply Shortages Worsen in 2021

With a UK office in Milton Keynes, Starlab’s network of distributors specialize in liquid handling products including pipette tips, multi-channel pipettes, and cell culture tubes, as well as PCR test consumables and nitrile and latex gloves.

According to Laboratory News, Starlab’s 2021 annual survey, released in March 2022, found that:

  • 64% cited late deliveries contributing to supply woes.
  • 58% noted medical labs getting preference over research labs, up from 46% in 2020.
  • 57% said demand for liquid handling products was the same as 2020.
  • 30% of respondents said material requirements were up 50% in 2021, compared to 2020.
  • 76% reported dealing with rising prices in lab operations.
  • 29% expect their need for materials to increase by 25% in 2022, and 3% said the increase may go as high as 50%.
  • 17% of respondents said they foresee challenges stemming from staff shortages, with 8% fearing employee burnout.

UK-European Medical Laboratories on Waiting Lists for Supplies

Could import of lab equipment and consumables from Asia and other areas outside UK have contributed to the shortages?

“A substantial portion of the world’s clinical laboratory automation, analyzers, instruments, and test kits are manufactured outside UK. Thus, UK labs may face a more acute shortage of lab equipment, tests, and consumables because governments in countries that manufacture these products are taking ‘first dibs’ on production, leaving less to ship to other countries,” said Robert Michel, Editor-in-Chief of Dark Daily and our sister publication The Dark Report.

Indeed, a statement on Starlab’s website describes challenges the company faces meeting customers’ requests for supplies.

“The pandemic also has an impact on our products that are manufactured in other countries. This particularly affects goods that we ship from the Asian region to Europe by sea freight. Due to the capacity restrictions on the ships, we expect additional costs for the transport of goods at any time. Unfortunately, the situation is not expected to ease for the time-being,” Starlab said.

Starlab is not the only organization sounding the alarm about lab supplies in the UK. The UK’s National Health Service also acknowledged gloves, pipette tips, and refrigerators being in short supply, according to an article in the journal Nature, titled, “‘Does Anyone Have Any of These?’: Lab-Supply Shortages Strike Amid Global Pandemic.

Furthermore, economists are forecasting probable ongoing supply chain effects from a new SARS-CoV-2 outbreak in China.

Lockdown of China’s Largest Shipping Province Threatens Supply Chains Worldwide

According to Bloomberg News, “Shenzhen’s 17.5 million residents [were] put into lockdown on [March 13] for at least a week. The city is located in Guangdong, the manufacturing powerhouse province, which has a gross domestic product of $1.96 trillion—around that of Spain and South Korea—and which accounts for 11% of China’s economy … Guangdong’s $795 billion worth of exports in 2021 accounted for 23% of China’s shipments that year, the most of any province.”

Bloomberg noted that “restrictions in Shenzhen could inflict the heaviest coronavirus-related blow to growth since a nationwide lockdown in 2020, with the additional threat of sending supply shocks rippling around the world.”

“Given that China is a major global manufacturing hub and one of the most important links in global supply chains, the country’s COVID policy can have notably spillovers to its trading partners’ activity and the global economy,” Tuuli McCully, Head of Asia-Pacific Economies, Scotiabank, told Bloomberg News.

Wise medical laboratory leaders will remain apprised of supply chain developments and possible lockdowns in Asia while also locating and possibly securing new sources for test materials and laboratory equipment in anticipation of future supply shortages.

Donna Marie Pocius

Related Information:

Rising Costs and Material Shortages Pile Pressure on UK’s Over-Stretched Laboratories

Measuring the Mood in the Laboratory Sector: Materials Bottlenecks and Staff Shortages Weighing on Research

COVID Demand Has Pushed UK Laboratories “to Limit”

‘Does Anyone Have One of These?’ Lab-Supply Shortages Strike Amid Global Pandemic

World Economy Faces Supply Hit as China Battles COVID-19 Again

United Kingdom’s National Health Service Now Offers Liquid Biopsy Tests to Certain Cancer Patients as a Complement to Anatomic Pathology Testing

Decision is part of UK effort to diagnose 75% of all cancers at stage I or stage II by 2028 and demonstrates to pathologists that the technology used in liquid biopsy tests is improving at a fast pace

Pathologists and medical laboratory scientists know that when it comes to liquid biopsy tests to detect cancer, there is plenty of both hope and hype. Nevertheless, following a successful pilot study at the Christie NHS Foundation Trust in Manchester, England, which ran from 2015-2021, the UK’s National Health Service (NHS) is pushing forward with the use of liquid biopsy tests for certain cancer patients, The Guardian reported.

NHS’ decision to roll out the widespread use of liquid biopsies—a screening tool used to search for cancer cells or pieces of DNA from tumor cells in a blood sample—across the UK is a hopeful sign that ongoing improvements in this diagnostic technology are reaching a point where it may be consistently reliable when used in clinical settings.

The national program provides personalized drug therapies based on the genetic markers found in the blood tests of cancer patients who have solid tumors and are otherwise out of treatment options. The liquid biopsy creates, in essence, a match-making service for patients and clinical trials.

Liquid Biopsy Genetic Testing for Cancer Patients

“The learnings from our original ‘Target’ study in Manchester were that genetic testing needs to be done on a large scale to identify rare genetic mutations and that broader access to medicines through clinical trials being undertaken across the country rather than just one site are required,” Matthew Krebs, PhD, Clinical Senior Lecturer in Experimental Cancer Medicine at the University of Manchester, told The Guardian.

Krebs, an honorary consultant in medical oncology at the Christie NHS Foundation Trust, led the Target National pilot study.

“This study will allow thousands of cancer patients in the UK to access genetic testing via a liquid biopsy. This will enable us to identify rare genetic mutations that in some patients could mean access to life-changing experimental medicines that can provide great treatment responses, where there are otherwise limited or no other treatment options available.”

Detecting cancers at earlier stages of disease—when treatment is more likely to result in improved survival—has become a strategic cancer planning priority in the UK, theBMJ noted.

“The NHS is committed to diagnosing 75% of all cancers at stage I or II by 2028, from around 50% currently,” the BMJ wrote. “Achieving such progress in less than a decade would be highly ambitious, even without disruption caused by the COVID-19 pandemic. In this context, considerable hope has been expressed that blood tests for circulating free DNA—sometimes known as liquid biopsy—could help achieve earlier detection of cancers.”

The Guardian noted that the UK’s initiative will use a liquid biopsy test made by Swiss-healthcare giant Roche.

 Matthew Krebs, PhD
“We can’t guarantee that we will find a fault in the genetic code of every cancer patient we recruit, or that if we do, there will be a suitable drug trial for them,” Matthew Krebs, PhD (above), lead scientist of the NHS’ Target National pilot study, told The Guardian. “However, as we learn more about the genetics of cancer in this study, it will help doctors and scientists develop new treatments to help people in the future. Ultimately, we hope liquid biopsy testing will be adopted into routine NHS care, but we need studies such as this to show the benefit of the test on a large scale and provide the evidence that patients can benefit from being matched to targeted medicines on the basis of the blood test.” (Photo copyright: Cancer Research UK Manchester Centre.)

Liquid Biopsies: Hope or Hype?

In 2020, the US Food and Drug Administration (FDA) expanded its clearance for two liquid biopsy tests in this country—Guardant Health’s Guardant360 CDx and Foundation Medicine’s FoundationOne Liquid CDx—for use as companion diagnostic tests and for general tumor profiling for certain non-small cell lung, prostate, breast, and ovarian cancers, according to an NIH National Cancer Institute news release.

In her article “The Promise of Liquid Biopsies for Cancer Diagnosis,” published in the American Journal of Managed Care (AJMC) Evidence-based Oncology, serial healthcare entrepreneur and faculty lecturer at Harvard Medical School Liz Kwo, MD, detailed the optimism surrounding the “revolutionary screening tool,” including its potential for:

  • providing earlier diagnose of cancer,
  • customizing treatment through genotyping,
  • identifying mechanisms of resistance to therapies,
  • measuring remaining disease after treatment,
  • assessing cancer relapse or resistance to treatment, and
  • eliminating risk surrounding traditional biopsies.

The AJMC article estimated the liquid biopsy market will be valued at $6 billion by 2030. However, Kwo also noted that clinical adoption of liquid biopsies in the US continues to face challenges.

In a STAT editorial, titled, “Liquid Biopsy: Misplaced Faith in Early Cancer Detection?H. Gilbert Welch, MD, a Harvard University academic physician and cancer researcher, voiced concerns about widespread use of liquid biopsies for cancer screening.

Welch compared the investor hype surrounding liquid biopsies to that of the now-defunct blood testing company Theranos, which lured high-profile investors to pour millions into its unproven diagnostic technology.

“Effective cancer screening requires more than early detection. It also requires that starting therapy earlier helps people live to older ages than they would if they started treatment later,” he wrote. “If that doesn’t happen, liquid biopsies will only lead to people living longer with the knowledge they have a potentially incurable disease without extending their lives. These people would be subjected to cancer therapies and their toxicities earlier, but at a time when they would otherwise be experiencing no cancer-related signs or symptoms.”

And so, while there’s much excitement about the possibility of a minimally invasive way to detect cancer, anatomic pathology groups and clinical laboratories will have to wait and see if the hype and hope surrounding liquid biopsies is substantiated by further research.

Andrea Downing Peck

Related Information:

NHS Cancer Patients to Get Pioneering Genetic Test to Find Best Treatments

‘Liquid Biopsy’ for Cancer Screening

The Promise of Liquid Biopsies for Cancer Diagnosis

Cancer ‘Liquid Biopsy’ Blood Test Gets Expanded FDA Approval

Liquid Biopsy: Misplaced Faith in Early Cancer Detection?

;