News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

In the Field of Nano-Scale Diagnostics, Many Researchers Are Developing ‘Lab-on-Skin’ Technologies That Can Monitor Many Clinical Laboratory Biomarkers

Lab-on-skin is the latest concept to join the lab-on-a-chip, lab-in-a-needle, and lab-on-paper field, as researchers continue to seek ways to miniaturize medical laboratory tests

Move over, lab-on-a-chip and lab-on-paper. There’s a new diagnostic technology in research labs that is gaining credibility. It is called lab-on-skin technology and some scientists are quite excited about how it might be used for a variety of clinical purposes.

A recent story published in ACS Nano titled, “Lab-on-Skin: A Review of Flexible and Stretchable Electronics for Wearable Health Monitoring,” reviews the latest advancements in lab-on-skin technology. It provides an overview of different research initiatives incorporating lab-on-skin technologies.

From telehealth to precision medicine to point-of-care mobile devices, anatomic pathologist and clinical laboratories are about to be challenged with new diagnostic technologies. These technologies are intended to streamline the workflow between physicians and medical laboratories while improving access to patient data and medical laboratory test results.

Of all the mobile devices designed to support medical care, no technology may have more potential to change the pathology profession than nanotechnology-based diagnostic devices. Whether lab-on-a-chip, lab-in-a-needle, or lab-on-paper, these miniature laboratories are so small dozens can be carried in a pocket.

Most importantly, for certain diagnostic tests, some of these devices being developed hope to deliver full-size-lab quality results accurately and inexpensively, even in rural regions and areas with little or no resources, such as electricity or water. (See Dark Daily, “Lab-on-a-Chip Diagnostics: When Will Clinical Laboratories See the Revolution?” September 9, 2016.)

Now, researchers have demonstrated that even biomarkers within human skin can be tested by medical wearable devices. “Lab-on-skin” has entered the pathology vernacular.

Lab-on-Skin Constantly Measures Physiological Data

According to ACS Nano, lab-on-skin devices are small electronic patches worn directly on the skin that noninvasively measure a variety of physiological data. These flexible gadgets can interpret information including:

  • body temperature;
  • blood oxygenation;
  • hydration;
  • blood pressure;
  • glucose;
  • potassium;
  • sodium; and,
  • lactate and pH levels in individuals.

The devices may also be used for wound care, prosthetics and rehabilitation, as well as for optogenetics and human-machine interfaces (HMI).

The image above from the ACS Nano article demonstrates various lab-on-skin devices, including: an NFC tattoo with a bare die chip mounted on an acrylic adhesive film; a soft radio sensor with commercial chips encapsulated in a fluid/ecoflex package; and, a sweat sensor on silicone foam. Each of these devices could be capable of delivering actionable diagnostic data to anatomic pathologists and clinical laboratories. (Image copyright: ACS Nano.)

Lab-on-skin technology can be utilized to read electrophysiological signals typically measured by electrodes placed on various parts of the body, such as:

The direct connection between the patches and the skin allows for continuous and precise data collection without the threat of drying out that comes with traditional electrodes.

Nanotechnology Driving Clinical Laboratory Diagnostic Applications

Because it is the largest organ in the body, skin provides a perfect pathway to convey biological information originating from various parts of the body, such as inner organs, muscles, blood vessels, and the dermis and epidermis.

The ACS Nano article discusses advancements in the designs and materials used for lab-on-skin patches. In addition to the term “lab-on-skin,” these devices may also be referred to as electronic skin, epidermal electronics, and electronic tattoos. They have untapped potential in a variety of clinical applications, including:

For example, researchers at the University of Illinois at Urbana-Champaign have created an epidermal nanotechnology device that utilizes sensors and wireless interfaces to measure ultraviolet (UV) exposure, a risk factor for skin cancers.

“Our goal with this research is to establish a set of foundational materials and device designs for systems that can improve health outcomes by providing information on UV exposure,” John A. Rogers, PhD, and Professor of Materials Science and Engineering and Professor of Chemistry told Nanowerk Spotlight.

Nanotechnology employs extremely small particles performed at the nanoscale (about 1 to 100 nanometers). This field is emerging as a vital element behind cutting-edge innovations in medicine and healthcare.

“We developed new chemistries that yield color changes that quantitatively relate to total exposure dose, separately in both the UV-A and UV-B regions of the solar spectrum,” explained Rogers. “Our formulations have the additional advantage that they provide soft, low modulus mechanics to enhance comfort and biocompatibility with the skin surface.”

Mini-Laboratory Devices Could Push Pathology Data to Clinical Laboratories

The combination of using lab-on-skin devices with nanotechnology can provide researchers and medical professionals a multifunctional and valuable tool for health monitoring and the diagnosis of diseases. However, more research and clinical studies are needed to establish the validity of using lab-on-skin devices in healthcare applications.

Nevertheless, clinical laboratories and pathology groups will be handling more data in the future, generated by these miniature laboratory devices. Their usefulness, especially in challenging healthcare environments, is only beginning to be fully discovered.

—JP Schlingman

Related Information:

A Lab-on-Skin: A Review of Flexible and Stretchable Electronics for Wearable Health Monitoring (downloadable PDF)

Lab-on-Skin: A Review of Flexible and Stretchable Electronics for Wearable Health Monitoring (original ACS Nano article)

Lab-on-Skin: Nanotechnology Electronics for Wearable Health Monitoring

Stick-on Epidermal Electronics Tattoo to Measure UV Exposure

Nanotechnology in Healthcare (Part 1: Fitness Monitoring, Diagnostics and Prevention)

Nanotechnology in Healthcare (Part 2: Nanomedicine Therapy)

Breathable, Wearable Electronics on Skin for Long-term Health Monitoring

Nano-chip Promises to Heal Organs at a Touch

IBM and Mount Sinai Researchers Develop Innovative Medical Lab-on-a-Chip Solution

Lab-on-a-Chip Diagnostics: When Will Clinical Laboratories See the Revolution?

Researchers at University of Rhode Island Unveil Lab-on-Paper Test Capable of Multireagent Diagnostics: Could Enable ‘Diagnostics Without the Lab’ Say Developers

Sleek ‘Lab in a Needle’ Is an All-in-One Device That Detects Liver Toxicity in Minutes during a Study, Showing Potential to Supplant Some Medical Laboratory Tests

 

Clinical Laboratories Could Soon Diagnose 17 Diseases with a Single Breath Analyzer Test from Israel’s Institute of Technology

The Technion breathalyzer would give pathology groups and medical laboratories unprecedented ability to support physicians in diagnosing and treating cancers, chronic diseases, and other illnesses

Readers of Dark Daily know that several pathology research teams in America and the UK are developing breath analyzer tests that can detect everything from lung cancer to early-stage infections. Clinical laboratories will soon have a plethora of breath-related tests from which to choose. Now there’s a new kid on the block. A breathalyzer test that can detect up to 17 distinct cancerous, inflammatory, and neurological diseases!

Assuming the cost per test was at a competitive level to existing technologies, what would give this new diagnostic system appeal to physicians and patients alike is that it would be a non-invasive way to diagnose disease. Only a sample of the patient’s breath would be needed to perform the assays.

Researchers at the Israel Institute of Technology, or Technion, published the results of their study in ACS Nano, a monthly journal of the American Chemical Society devoted to “nanoscience and nanotechnology research at the interfaces of chemistry, biology, materials science, physics, and engineering.” (more…)

Israeli Researchers Create Tiny, Programmable, Genetic Test Device that Can Roam the Body and Diagnose and Treat Diseases on the Spot

The genetic device holds promise for developing cancer-specific gene therapies and could create new consulting opportunities for pathologists and clinical laboratory scientists

In Israel, researchers are making progress on the futuristic concept of biologic, medically-savvy computers that are so small they can fit inside human cells and roam the body detecting and treating diseases in vivo. This is another example of how new technologies can shift diagnostic testing away from clinical laboratories.

This groundbreaking work is being done at the Weizmann Institute of Science in Rehovot. The research team has designed a genetic device that is inserted into bacteria cells where it operates independently. This device is programmed to identify certain disease parameters and mount an appropriate response, according to a story published by Science Daily. (more…)

New Technology Captures Tumor Cells from the Bloodstream

Nano-technology Breakthrough May Prevent Cancers from Metastasizing

With the goal of removing tumor cells from the bloodstream, a biomedical engineering team at the University of Arkansas for Medical Sciences (UAMS) in Little Rock has discovered a non-invasive way to identify cancer and to capture tumor cells in the bloodstream. This landmark discovery, could dramatically improve early cancer diagnosis and prevent deadly metastasis. It could also provide a framework for a new type of diagnostic test that could detect metastatic cancer from a blood sample.

(more…)

Magnetic Biomarker Chip Spots Cancer Before It Develops

Up to 400 times more sensitive than existing ELISA-based methods

Detecting any of seven cancers in their earliest stages may be feasible through the use of a new biomarker chip that was recently unveiled by scientists from Stanford University’s Center for Magnetic Nanotechnology. To give their biomarker chip increased sensitivity over fluorescent detection methods, the scientists use magnetic technologies to accomplish detection.

Reporting in Proceedings of the National Academy of Sciences (PNAS), lead scientist Shan X. Wang, Ph.D., director of the center and professor of materials science and electrical engineering, says the chip is able to detect very low levels of seven cancers. The biodetection chip is to be marketed by Silicon Valley startup MagArray Inc., of Sunnyvale, California. It detects multiple proteins in blood or DNA strands using magnetic technology similar to how a computer reads a hard drive. Developers say this chip could also be used to diagnose cardiovascular disease and monitor cancer therapy.

(more…)

;