News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

CDC Issues Warning on Candida Auris, a Highly Drug Resistant and Dangerous Yeast Infection

CDC advises clinical laboratories and microbiologists encountering C. auris to follow their own protocols before adopting federal agency guidelines

In July, the Centers for Disease Control and Prevention (CDC) warned healthcare facilities and clinical laboratories to be on the alert for Candida auris (C. auris) infections in their patients. An outbreak of the drug resistant and potentially deadly fungus had appeared in two Dallas hospitals and a Washington D.C. nursing home.

Since those outbreaks, researchers have studied with urgency the “superbug’s” emergence in various types of healthcare facilities around the nation, not just hospitals. Their goal was to discover how it was successfully identified and contained.

One such recently released study involved researchers from the Orange County Health Department (OCHD) working with the California Department of Public Health and the CDC to track C. auris in long-term acute care hospitals (LTACHs) and ventilator-capable skilled-nursing facilities (vSNFs), Medscape reported.

The researchers published their findings in Annals of Internal Medicine, titled, “Rapid Assessment and Containment of Candida auris Transmission in Post-acute Care Settings—Orange County, California, 2019.”

“Seeing what was happening in New York, New Jersey, and Illinois [was] pretty alarming for a lot of the health officials in California [who] know that LTACHs are high-risk facilities because they take care of [very] sick people. Some of those people are there for a very long time,” the study’s lead author Ellora Karmarkar, MD, MSc, told Medscape. Karmarkar is an infectious disease fellow with the University of Washington and formerly an epidemic intelligence service officer with the CDC.

“One of the challenges was that people were so focused on COVID that they forgot about the MDROs (multi-drug resistant organisms] … Some of the things that we recommend to help control Candida auris are also excellent practices for every other organism including COVID care,” she added.

According to Medscape, “The OCHD researchers screened LTACH and vSNF patients with composite cultures from the axilla-groin or nasal swabs. Screening was undertaken because 5%–10% of colonized patients later develop invasive infections, and 30%–60% die.

Medscape also reported that the first bloodstream infection was detected in May 2019, and that, according to the Annals of Internal Medicine study, as of January 1, 2020, of 182 patients:

  • 22 (12%) died within 30 days of C. auris identification,
  • 47 (26%) died within 90 days,
  • One of 47 deaths was attributed to C. auris,
  • Whole-genome sequencing showed that the isolates were all closely related in clade III.

“This is really the first time we’ve seen clustering of resistance in which patients seemed to be getting the infections from each other,” Meghan Lyman, MD, Medical Officer in the Mycotic Diseases Branch of the CDC, told Fox News.

Candida auris graphic

The graphic above illustrates how Candida auris is “spanning the globe,” The New York Times reported. Clinical laboratories that encounter this potentially deadly fungus are advised to contact the CDC immediately for guidance and to take proactive steps to prepare for the “superbug’s” arrival. (Graphic copyright: The Scottish Sun.)

Be More Proactive than Reactive in Identifying C. Auris, CDC Says

C. auris is a type of yeast infection that can enter the bloodstream, spread throughout the body, and cause serious complications. People who appear to have the highest risk of contracting the infection are those:

  • Who have had a lengthy stay in a healthcare facility,
  • Individuals connected to a central venous catheter or other medical tubes, such as breathing or feeding tubes, or
  • Have previously received antibiotics or antifungal medications.

The CDC is concerned about C. auris for three primary reasons:

  • It tends to be resistant to the antifungal drugs that are commonly used to treat Candida infections.
  • It can be difficult to identify via standard laboratory testing and is easily misidentified in labs without specific technology.
  • It can quickly lead to outbreaks in healthcare settings.

“With all this spread that we’ve been seeing across the country we’re really encouraging health departments and facilities to be more proactive instead of reactive to identifying Candida auris in general,” Lyman told STAT. “Because we’ve found that controlling the situation and containing spread is really easiest when it’s identified early before there’s widespread transmission.”

Dan Diekema, MD

There continues to be concerns over this highly drug-resistant infection among hospital physicians and medical laboratories. “Acute care hospitals really ought to be moving toward doing species identification of Candida from nonsterile sites if they really want to have a better chance of detecting this early,” Dan Diekema, MD (above), an epidemiologist and clinical microbiologist at the University of Iowa, told Medscape. (Photo copyright: University of Iowa.)

Candia Auris versus Other Candida Infections

C. auris can cause dangerous infections in the bloodstream and spread to the central nervous system, kidneys, liver, spleen, bones, muscles, and joints. It spreads mostly in long-term healthcare facilities among patients with other medical conditions.

The symptoms of having a Candida auris infection include:

  • Fever
  • Chills
  • Pain
  • Redness and swelling
  • Fluid drainage (if an incision or wound is present)
  • General feeling of tiredness and malaise

C. auris infections are typically diagnosed via cultures of blood or other bodily fluids, but they are difficult to distinguish from more common types of Candida infections, and special clinical laboratory tests are needed to definitively diagnose C. auris.

Whole-genome Sequencing of C. Auris and Drug Resistance

The CDC conducted whole-genome sequencing of C. auris specimens gathered in Asia, Africa, and South America and discovered four different strains of the potentially life-threatening Candida species. All four detected strains have been found in the United States.

There are only three classes of antifungal drugs used to treat Candida auris infections:

However, 85% of the infections in the US have proven to be resistant to azoles and 38% are resistant to polyenes. Patients respond well to echinocandins, but more effective therapies are needed especially as some isolates may become resistant while a patient is on drug therapy, STAT reported.

“Even while it might be susceptible upfront, after a week or two of therapy, we may find that the patient has an infection now caused by an isolate of the same Candida auris that has become resistant to the echinocandins and we are really left with nothing else,” Jeffrey Rybak, PhD, PharmD, Instructor, Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, told Infection Control Today.

Although relatively rare, C. auris infections are on the rise. The good news is that there may be further pharmaceutical help available soon. New antifungal agents, such as Ibrexafungerp (Brexafemme) show promise in fighting C. auris infections, but more research is needed to prove their efficacy.

What Should Clinical Laboratories Do?

The CDC stresses that clinical laboratories and microbiologists working with known or suspected cases of Candida auris should first adhere to their own safety procedures. The CDC issued guidelines, but they are not meant to supersede the policies of individual labs.

The CDC also recommends that healthcare facilities and clinical laboratories that suspect they have a patient with a Candida auris infection immediately contact the CDC and state or local public health authorities for guidance.  

JP Schlingman

Related Information

U.S. Sees First Cases of Dangerous Fungus Resistant to all Drugs in Untreated People

‘Superbug’ Fungus Spread in Two Cities, Health Officials Say           

CDC: Candida auris

CDC: Drug-resistant Candida auris   

CDC Reports Two Outbreaks of Pan-resistant Candida auris

Notes from the Field: Transmission of Pan-Resistant and Echinocandin-Resistant Candida auris in Health Care Facilities―Texas and the District of Columbia, January–April 2021

Drugs in Development Might Help Fight Deadly Candida Auris

During Pandemic, Clinical Laboratories Should Be Alert for Drug Resistant Infections That Pose High Risk to COVID-19 Patients

Potentially Fatal Fungus Invades Hospitals and Public Is Not Informed

Microbial Surveillance Study Snares Patients Entering Michigan Hospitals with Drug-Resistant Bacteria on Their Hands

Thorough hand-washing protocols aren’t just for healthcare professionals anymore. Patients also need to be educated to prevent hospital-acquired infections

Microbiologists and clinical laboratory managers will be particularly interested to learn that patients are bringing deadly organisms into hospitals on their hands. That’s the conclusion of a University of Michigan (UM) study which found that as patients enter and move throughout hospitals, they deposit and spread multi-drug resistant organisms, or MDROs on clinical surfaces. When those surfaces are not properly decontaminated, the bacterial contamination spreads on contact.

This finding has implications for the nosocomial infection teams in hospitals that include microbiologists and clinical laboratories. After all, every day there is a large flow of walk-in patients and visitors who come in contact with dozens of surfaces. The potential for contamination with multi-drug resistant organisms is high.

Antibiotic-resistant bacteria have been the root cause of a marked increase in hospital-acquired infections (HAIs), which Dark Daily has covered extensively. That’s why healthcare professionals practice proper hand-washing protocols to help reduce the transmission of pathogens and curtail possible infections.

The UM study, however, suggests that patients also should be educated on proper hand hygiene to diminish the potential spread of bacteria, especially before making trips to the emergency room.

The UM researchers published their study in the Oxford Academic journal Clinical Infectious Diseases.

How to Kill a Superbug

Between February and July of 2017, UM researchers at two hospitals in Southeast Michigan tested 399 general medicine hospital patients for the presence of MDROs, also known as superbugs. They swabbed the palms, fingers, and around the nails of the patients’ dominant hands and the interior of both nostrils.

The researchers found that 14% of the patients tested positive for MDROs. In addition, nearly one third of high-touch objects and surfaces in the hospital rooms tested positive for superbugs as well.  

The hospital room surfaces that were swabbed for the presence of MDROs were:

  • Bed control/bed rail;
  • Call button/television remote;
  • Bedside tray table top;
  • Telephone;
  • Toilet seat; and
  • Bathroom door knob.

The research team specifically looked for:

Due to the overuse of antibiotics, these types of bacteria are often resistant to the drugs that were once used to kill them.

“Hand hygiene narrative has largely focused on physicians, nurses, and other frontline staff, and all the policies and performance measurements have centered on them, and rightfully so,” said Lona Mody, MD (above) in a press release. Mody is Professor of Internal Medicine at UM and one of the lead researchers for the study. “But our findings make an argument for addressing transmission of MDROs in a way that involves patients, too.”

Anatomy of a Hospital-Acquired Infection

The scientists tested patients and surfaces at different stages of their hospital stays. The samples were taken on the day of admission, days three and seven of the stays, and weekly thereafter until the patients were discharged.

The team found that 6% of the patients who did not have MDROs present at the beginning of their hospital stays tested positive for superbugs at later stages of their stays. Additionally, 20% of the tested objects and surfaces in the patients’ rooms had superbugs on them at later test stages that were not present earlier in the hospital stays.

“This study highlights the importance of hand washing and environmental cleaning, especially within a healthcare setting where patients’ immune systems are compromised,” noted Katherine Reyes, MD, Department of Infectious Diseases, Henry Ford Hospital, in the press release. “This step is crucial not only for healthcare providers, but also for patients and their families. Germs are on our hands; you do not need to see to believe it. And they travel. When these germs are not washed off, they pass easily from person to person and objects to person and make people sick.”

Patients included in the study had to be new admissions, on general medicine floors, and at least 18 years of age. Criteria that excluded individuals from participation in the research included:

  • Being in observation status, typically after a medical procedure;
  • Transfers from other hospitals;
  • Transfers from intensive care units;
  • Having cystic fibrosis (these patients have a higher likelihood of MDRO colonization);
  • Receiving end-of-life care; and
  • Non-English speaking.

Patients who were transferred to a room on a nonparticipating floor within the hospitals were immediately discharged from the study. 

Patients Travel Throughout Hospitals Spreading Germs

The presence of superbugs on patients or surfaces does not automatically translate to a patient getting sick with antibiotic-resistant bacteria. Only six of the patients in this study developed MRSA. However, all six of those individuals tested positive for the superbug either on their hands or on surfaces within their room. 

The researchers noted that hospital patients typically do not stay in their rooms. They are encouraged to walk throughout the hospital to speed up the recovery process, and often are transported to other areas of hospitals for medical tests and procedures. Patients also may be picking up superbugs from other patients and staff members, other hospital areas, and commonly-touched surfaces.

The UM researchers concluded in their study that “while the burden of preventing infections has largely been borne by [healthcare personnel], our study shows that patient hands are an important reservoir and play a crucial role in the transmission of pathogens in acute care hospitals. Thus, patient hand hygiene protocols should be implemented and tested for their ability to reduce environmental contamination, pathogen transmission, and healthcare-associated infections, as well as to increase meaningful patient engagement in infection prevention.”

“Infection prevention is everybody’s business,” stated Mody in the press release. “We are all in this together. No matter where you are, in a healthcare environment or not, this study is a good reminder to clean your hands often, using good techniques—especially before and after preparing food, before eating food, after using a toilet, and before and after caring for someone who is sick—to protect yourself and others.”

These research findings should prove to be valuable for infection control teams and microbiology laboratories in the nation’s hospitals and health systems, as well as independent clinical laboratories, urgent care centers, and retail healthcare clinics.

Learning more about the transmission of infectious agents from patient to patient and from surfaces to patients could aid in the development of new techniques and strategies to prevent superbugs from manifesting in medical environments.

—JP Schlingman

Related Information:

‘Superbugs’ Found on Many Hospital Patients’ Hands and What They Touch Most Often

Multidrug-resistant Organisms in Hospitals: What Is on Patient Hands and in Their Rooms?

Unexpected Discovery of Source of Lethal, Antibiotic-Resistant Strain of E. Coli Could Lead to New Medical Laboratory Tests and Preventative Treatment

Lurking Below: NIH Study Reveals Surprising New Source of Antibiotic Resistance That Will Interest Microbiologists and Medical Laboratory Scientists

Pathologists and Clinical Laboratories to Play Critical Role in Developing New Tools to Fight Antibiotic ResistanceCould Proximity of Toilets to Sinks in Medical Intensive Care Units Contribute to Hospital-Acquired Infections?