News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Dermatopathologists May Soon Have Useful New Tool That Uses AI Algorithm to Detect Melanoma in Wide-field Images of Skin Lesions Taken with Smartphones

MIT’s deep learning artificial intelligence algorithm demonstrates how similar new technologies and smartphones can be combined to give dermatologists and dermatopathologists valuable new ways to diagnose skin cancer from digital images

Scientists at the Massachusetts Institute of Technology (MIT) and other Boston-area research institutions have developed an artificial intelligence (AI) algorithm that detects melanoma in wide-field images of skin lesions taken on smartphones. And its use could affect how dermatologists and dermatopathologists diagnose cancer.

The study, published in Science Translational Medicine, titled, “Using Deep Learning for Dermatologist-Level Detection of Suspicious Pigmented Skin Lesions from Wide-Field Images,” demonstrates that even a common device like a smartphone can be a valuable resource in the detection of disease.

According to an MIT press release, “The paper describes the development of an SPL [Suspicious Pigmented Lesion] analysis system using DCNNs [Deep Convolutional Neural Networks] to more quickly and efficiently identify skin lesions that require more investigation, screenings that can be done during routine primary care visits, or even by the patients themselves. The system utilized DCNNs to optimize the identification and classification of SPLs in wide-field images.”

The MIT scientists believe their AI analysis system could aid dermatologists, dermatopathologists, and clinical laboratories detect melanoma, a deadly form of skin cancer, in its early stages using smartphones at the point-of-care.  

Luis Soenksen, PhD

“Our research suggests that systems leveraging computer vision and deep neural networks, quantifying such common signs, can achieve comparable accuracy to expert dermatologists,” said Luis Soenksen, PhD (above), Venture Builder in Artificial Intelligence and Healthcare at MIT and first author of the study in an MIT press release. “We hope our research revitalizes the desire to deliver more efficient dermatological screenings in primary care settings to drive adequate referrals.” The MIT study demonstrates that dermatologists, dermatopathologists, and clinical laboratories can benefit from using common technologies like smartphones in the diagnosis of disease. (Photo copyright: Wyss Institute Harvard University.)

Improving Melanoma Treatment and Patient Outcomes

Melanoma develops when pigment-producing cells called melanocytes start to grow out of control. The cancer has traditionally been diagnosed through visual inspection of SPLs by physicians in medical settings. Early-stage identification of SPLs can drastically improve the prognosis for patients and significantly reduce treatment costs. It is common to biopsy many lesions to ensure that every case of melanoma can be diagnosed as early as possible, thus contributing to better patient outcomes.

“Early detection of SPLs can save lives. However, the current capacity of medical systems to provide comprehensive skin screenings at scale are still lacking,” said Luis Soenksen, PhD, Venture Builder in Artificial Intelligence and Healthcare at MIT and first author of the study in the MIT press release.

The researchers trained their AI system by using 20,388 wide-field images from 133 patients at the Gregorio Marañón General University Hospital in Madrid, as well as publicly available images. The collected photographs were taken with a variety of ordinary smartphone cameras that are easily obtainable by consumers.

They taught the deep learning algorithm to examine various features of skin lesions such as size, circularity, and intensity. Dermatologists working with the researchers also visually classified the lesions for comparison.

Smartphone image of pigmented skin lesions

When the algorithm is “shown” a wide-field image like that above taken with a smartphone, it uses deep convolutional neural networks to analyze individual pigmented lesions and screen for early-stage melanoma. The algorithm then marks suspicious images as either yellow (meaning further inspection should be considered) or red (indicating that further inspection and/or referral to a dermatologist is required). Using this tool, dermatopathologists may be able to diagnose skin cancer and excise it in-office long before it becomes deadly. (Photo copyright: MIT.)

“Our system achieved more than 90.3% sensitivity (95% confidence interval, 90 to 90.6) and 89.9% specificity (89.6 to 90.2%) in distinguishing SPLs from nonsuspicious lesions, skin, and complex backgrounds, avoiding the need for cumbersome individual lesion imaging,” the MIT researchers noted in their Science Translational Medicine paper.

In addition, the algorithm agreed with the consensus of experienced dermatologists 88% of the time and concurred with the opinions of individual dermatologists 86% of the time, Medgadget reported.

Modern Imaging Technologies Will Advance Diagnosis of Disease

According to the American Cancer Society, about 106,110 new cases of melanoma will be diagnosed in the United States in 2021. Approximately 7,180 people are expected to die of the disease this year. Melanoma is less common than other types of skin cancer but more dangerous as it’s more likely to spread to other parts of the body if not detected and treated early.

More research is needed to substantiate the effectiveness and accuracy of this new tool before it could be used in clinical settings. However, the early research looks promising and smartphone camera technology is constantly improving. Higher resolutions would further advance development of this type of diagnostic tool.

In addition, MIT’s algorithm enables in situ examination and possible diagnosis of cancer. Therefore, a smartphone so equipped could enable a dermatologist to diagnose and excise cancerous tissue in a single visit, without the need for biopsies to be sent to a dermatopathologist.

Currently, dermatologists refer a lot of skin biopsies to dermapathologists and anatomic pathology laboratories. An accurate diagnostic tool that uses modern smartphones to characterize suspicious skin lesions could become quite popular with dermatologists and affect the flow of referrals to medical laboratories.

JP Schlingman

Related Information:

Software Spots Suspicious Skin Lesions on Smartphone Photos

An Artificial Intelligence Tool That Can Help Detect Melanoma

Using Deep Learning for Dermatologist-level Detection of Suspicious Pigmented Skin Lesions from Wide-field Images

Another Milestone for CRISPR-Cas9 Technology: First Trial Data for Treatment Delivered Intravenously

Unlike most other CRISPR/Cas-9 therapies that are ex vivo treatments in which cells are modified outside the body, this study was successful with an in vivo treatment

Use of CRISPR-Cas9 gene editing technology for therapeutic purposes can be a boon for clinical laboratories. Not only is this application a step forward in the march toward precision medicine, but it can give clinical labs the essential role of sequencing a patient’s DNA to help the referring physician identify how CRISPR-Cas9 can be used to edit the patient’s DNA to treat specific health conditions.

Most pathologists and medical lab managers know that CRISPR-Cas9 gene editing technology has been touted as one of the most significant advances in the development of therapies for inherited genetic diseases and other conditions. Now, a pair of biotech companies have announced a milestone for CRISPR-Cas9 with early clinical data involving a treatment delivered intravenously (in vivo).

The therapy, NTLA-2001, was developed by Intellia Therapeutics (NASDAQ:NTLA) and Regeneron Pharmaceuticals (NASDAQ:REGN) for treatment of hereditary ATTR (transthyretin) amyloidosis, a rare and sometimes fatal liver disease.  

As with other therapies, determining which patients are suitable candidates for specific treatments is key to the therapy’s success. Therefore, clinical laboratories will play a critical role in identifying those patients who would most likely benefit from a CRISPR-delivered therapy.

Such is the goal of precision medicine. As methods are refined that can correct unwelcome genetic mutations in a patient, the need to do genetic testing to identify and diagnose whether a patient has a specific gene mutation associated with a specific disease will increase.

The researchers published data from a Phase 1 clinical trial of NTLA-2001 in the New England Journal of Medicine (NEJM), titled, “CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis.” They also presented their findings at the Peripheral Nerve Society (PNS) Annual Meeting.

What is NTLA-2001 and Why Is It Important?

Cleveland Clinic describes ATTR amyloidosis as a “protein misfolding disorder” involving transthyretin (TTR), a protein made in the liver. The disease leads to deposits of the protein in the heart, nerves, or other organs.

According to Intellia and Regeneron, NTLA-2001 is designed to inactivate the gene that produces the protein.

The interim clinical trial data indicated that one 0.3 mg per kilogram dose of the therapy reduced serum TTR by an average of 87% at day 28. A smaller dose of 0.1 mg per kilogram reduced TTR by an average of 52%. The researchers reported “few adverse events” in the six study patients, “and those that did occur were mild in grade.”

Current treatments, the companies stated, must be administered regularly and typically reduce TTR by about 80%.

“These are the first ever clinical data suggesting that we can precisely edit target cells within the body to treat genetic disease with a single intravenous infusion of CRISPR,” said Intellia President and CEO John Leonard, MD, in a press release. “The interim results support our belief that NTLA-2001 has the potential to halt and reverse the devastating complications of ATTR amyloidosis with a single dose.”

He added that “solving the challenge of targeted delivery of CRISPR-Cas9 to the liver, as we have with NTLA-2001, also unlocks the door to treating a wide array of other genetic diseases with our modular platform, and we intend to move quickly to advance and expand our pipeline.”

Daniel Anderson, PhD

“It’s an important moment for the field,” MIT biomedical engineer Daniel Anderson, PhD (above), told Nature. Anderson is Professor, Chemical Engineering and Institute for Medical Engineering and Science at the Koch Institute for Integrative Cancer Research at MIT. “It’s a whole new era of medicine,” he added. Advances in the use of CRISPR-Cas9 for therapeutic purposes will create the need for clinical laboratories to sequence patients’ DNA to help physicians determine the best uses for a CRISPR-Cas9 treatment protocol. (Photo copyright: Massachusetts Institute of Technology.)

In Part 2 of the Phase 1 trial, Intellia plans to evaluate the new therapy at higher doses. After the trial is complete, “the company plans to move to pivotal studies for both polyneuropathy and cardiomyopathy manifestations of ATTR amyloidosis,” the press release states.

Previous clinical trials reported results for ex vivo treatments in which cells were removed from the body, modified with CRISPR-Cas9 techniques, and then reinfused. “But to be able to edit genes directly in the body would open the door to treating a wider range of diseases,” Nature reported.

How CRISPR-Cas9 Works

On its website, CRISPR Therapeutics, a company co-founded by Emmanuelle Charpentier, PhD, a director at the Max Planck Institute for Infection Biology in Berlin, and inventor of CRISPR-Cas9 gene editing, explained that the technology “edits genes by precisely cutting DNA and then letting natural DNA repair processes take over.” It can remove fragments of DNA responsible for causing diseases, as well as repairing damaged genes or inserting new ones.

The therapies have two components: Cas9, an enzyme that cuts the DNA, and Guide RNA (gRNA), which specifies where the DNA should be cut.

Charpentier and biochemist Jennifer Doudna, PhD, Nobel Laureate, Professor of Chemistry, Professor of Biochemistry and Molecular Biology, and Li Ka Shing Chancellor’s Professor in Biomedical and Health at the University of California Berkeley, received the 2020 Nobel Prize in Chemistry for their work on CRISPR-Cas9, STAT reported.

It is important to pathologists and medical laboratory managers to understand that multiple technologies are being advanced and improved at a remarkable pace. That includes the technologies of next-generation sequencing, use of gene-editing tools like CRISPR-Cas9, and advances in artificial intelligence, machine learning, and neural networks.

At some future point, it can be expected that these technologies will be combined and integrated in a way that allows clinical laboratories to make very early and accurate diagnoses of many health conditions.

—Stephen Beale

Related Information

Intellia and Regeneron Announce Landmark Clinical Data Showing Deep Reduction in Disease-Causing Protein After Single Infusion of NTLA-2001, an Investigational CRISPR Therapy for Transthyretin (ATTR) Amyloidosis

CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis

Landmark CRISPR Trial Shows Promise Against Deadly Disease

CRISPR Milestone Pushes Gene Editing Toward Its Promise

CRISPR Clinical Trials: A 2021 Update

CRISPR Gene Therapy: Applications, Limitations, and Implications for the Future

Diseases CRISPR Could Cure: Latest Updates on Research Studies and Human Trials

Faster, Better, Cheaper: The Rise of CRISPR in Disease Detection

The Potential of CRISPR-Based Diagnostic Assays and Treatment Approaches Against COVID-19

Two Female CRISPR Scientists Make History, Winning Nobel Prize in Chemistry for Genome-Editing Discovery

MIT’s New Nanoparticle-based Technology Detects Cancer by Using a Multimodal Combination of Urine Tests and Medical Imaging

Use of such precision diagnostics offer ‘early detection, localization, and the opportunity to monitor response to therapy,’ say the MIT scientists

Oncologists and medical laboratory scientists know that most clinical laboratory tests currently used to diagnose cancer are either based on medical imaging technologies—such as CT scans and mammography—or on molecular diagnostics that detect cancer molecules in the body’s urine or blood.

Now, in a study being conducted at the Massachusetts Institute of Technology (MIT), researchers have developed diagnostic nanoparticles that can not only detect cancer cells in bodily fluids but also image the cancer’s location. This is the latest example of how scientists are combining technologies in new ways in their efforts to develop more sensitive diagnostic tests that clinical laboratories and other providers can use to detect cancer and other health conditions.

The MIT researchers published their study in the peer-reviewed scientific journal Nature, titled, “Microenvironment-triggered Multimodal Precision Diagnostics.”

Precision diagnostics such as molecular, imaging, and analytics technologies are key tools in the pursuit of precision medicine.

“Therapeutic outcomes in oncology may be aided by precision diagnostics that offer early detection, localization, and the opportunity to monitor response to therapy,” the authors wrote, adding, “Through tailored target specificities, this modular platform has the capacity to be engineered as a pan-cancer test that may guide treatment decisions for numerous tumor type.”

Development of Multimodal Diagnostics

The MIT scientists are developing a “multimodal” diagnostic that uses molecular screening combined with imaging techniques to locate where a cancer began in the body and any metastases that are present.

“In principle, this diagnostic could be used to detect cancer anywhere in the body, including tumors that have metastasized from their original locations,” an MIT new release noted.

“This is a really broad sensor intended to respond to both primary tumors and their metastases,” said biological engineer Sangeeta Bhatia, MD, PhD (above), in the news release. Bhatia is the John and Dorothy Wilson Professor of Health Sciences and Technology and Electrical Engineering and Computer Science at MIT and senior author of the study.

“It can trigger a urinary signal and also allow us to visualize where the tumors are,” she added. Bhatia previously worked on the development of cancer diagnostics that can produce synthetic biomarkers which are detectable in urine samples.

Sangeeta Bhatia, MD, PhD

“The vision is that you could use this in a screening paradigm—alone or in conjunction with other tests—and we could collectively reach patients that do not have access to costly screening infrastructure today,” said Sangeeta Bhatia, MD, PhD (above), in the MIT news release. “Every year you could get a urine test as part of a general check-up. You would do an imaging study only if the urine test turns positive to then find out where the signal is coming from. We have a lot more work to do on the science to get there, but that’s where we would like to go in the long run.” (Photo copyright: NBC News.)  

Precision Diagnostic Assists Assessment of Response to Cancer Therapy

For their research, the scientists added a radioactive tracer known as copper-64 to the nanoparticles. This enabled the particles to be used for positron emission tomography (PET) imaging. The particles were coated with a peptide that induced them to accumulate at tumor sites and insert themselves into cell membranes, producing a strong imaging signal for tumor detection.

The researchers tested their diagnostic nanoparticles in mouse models of metastatic colon cancer where tumor cells had traversed to the liver or the lungs. After treating the cancer cells with a chemotherapy regimen, the team successfully used both urine and imaging to determine how the tumors were responding to the treatment.

Bhatia is hopeful that this type of diagnostic could be utilized in assessing how patients are responding to treatment therapies and the monitoring of tumor recurrence or metastasis, especially for colon cancer.

What is unique about the approach used by Bhatia’s team is that one application of the copper-64 tracer can be used in vivo, in combination with imaging technology. The other application of the copper-64 tracer is in vitro in a urine specimen that can be tested by clinical laboratories.

“Those patients could be monitored with the urinary version of the test every six months, for instance. If the urine test is positive, they could follow up with a radioactive version of the same agent for an imaging study that could indicate where the disease had spread,” Bhatia said in the news release. “We also believe the regulatory path may be accelerated with both modes of testing leveraging a single formulation.”

Multimodal nanosensors graphic

The graphic above, taken from the MIT news release, shows how “multimodal nanosensors (1) are engineered to target and respond to hallmarks in the tumor microenvironment. The nanosensors provide both a noninvasive urinary monitoring tool (2) and an on-demand medical imaging agent (3) to localize tumor metastasis and assess response to therapy,” the news release states. (Photo and caption copyright: Massachusetts Institute of Technology.)

Precision Medicine Cancer Screening Using Nano Technologies

Bhatia hopes that the nanoparticle technology may be used as a screening tool in the future to detect any type of cancer.

Her previous research with nanoparticle technology determined that a simple urine test could diagnose bacterial pneumonia and indicate if antibiotics could successfully treat that illness, the news release noted.

Nanoparticle-based technology might be adapted in the future to be part of a screening assay that determines if cancer cells are present in a patient. In such a scenario, clinical laboratories would be performing tests on urine samples while imaging techniques are simultaneously being used to diagnose and monitor cancers.

Surgical pathologists may also want to monitor the progress of this research, as it has the potential to be an effective tool for monitoring cancer patients following surgery, chemotherapy, or radiation therapy.

—JP Schlingman

Related Information

Microenvironment-triggered Multimodal Precision Diagnostics

A Noninvasive Test to Detect Cancer Cells and Pinpoint their Location

With These Nanoparticles, a Simple Urine Test Could Diagnose Bacterial Pneumonia

Researchers Create Nanoparticle That Targets Cancer to Optimize MRI Scanning; New Technology Has Potential to Reduce Number of Tissue Biopsies and Pathology Testing

February COVID-19 Superspreader Event in Boston Confirmed by Use of Genetic Sequencing as Next-Gen Sequencing Is Put to Novel Uses, including in Clinical Laboratories

Gene sequencing is enabling disease tracking in new ways that include retesting laboratory specimens from before the SARS-CoV-2 outbreak to determine when it arrived in the US

On February 26 of this year, nearly 200 executives and employees of neuroscience-biotechnology company Biogen gathered at the Boston Marriott Long Wharf hotel for their annual leadership conference. Unbeknownst to the attendees, by the end of the following day, dozens of them had been exposed to and become infected by SARS-CoV-2, the coronavirus that causes the COVID-19 illness.

Researchers now have hard evidence that attendees at this meeting returned to their communities and spread the infection. The findings of this study will be relevant to pathologists and clinical laboratory managers who are cooperating with health authorities in their communities to identify infected individuals and track the spread of the novel coronavirus.

This “superspreader” event has been closely investigated and has led to intriguing conclusions concerning the use of genetic sequencing to revealed vital information about the COVID-19 pandemic. Recent improvements in gene sequencing technology is giving scientists new ways to trace the spread of COVID-19 and other diseases, as well as a method for monitoring mutations and speeding research into various treatments and vaccines. 

Genetic Sequencing Traces an Outbreak

“With genetic data, a record of our poor decisions is being captured in a whole new way,” Bronwyn MacInnis, PhD, Director of Pathogen Genomic Surveillance at the Broad Institute of MIT and Harvard, told The Washington Post (WaPo) during its analysis of the COVID-19 superspreading event. MacInnis is one of many Broad Institute, Harvard, MIT, and state of Massachusetts scientists who co-authored a study that detailed the coronavirus’ spread across Boston, including from the Biogen conference.

Titled, “Phylogenetic Analysis of SARS-CoV-2 in the Boston Area Highlights the Role of Recurrent Importation and Superspreading Events,” the paper explains how the researchers “sequenced and analyzed 772 complete SARS-CoV-2 genomes from the region” in order to investigate how the virus was introduced and spread through the area. They traced a specific mutation in the virus—“a simple switch of two letters in the virus’ 30,000-character genetic code,” WaPo reported.

What they discovered is both surprising and enlightening. According to WaPo’s report, at least 35 new cases of the virus were linked directly to the Biogen conference, and the same strain was discovered in outbreaks in two homeless shelters in Boston, where 122 people were infected. The variant tracked by the Boston researchers was found in roughly 30% of the cases that have been sequenced in the state, as well as in Alaska, Senegal, and Luxembourg.

“The data reveal over 80 introductions into the Boston area, predominantly from elsewhere in the United States and Europe. We studied two superspreading events covered by the data, events that led to very different outcomes because of the timing and populations involved. One produced rapid spread in a vulnerable population but little onward transmission, while the other was a major contributor to sustained community transmission,” the researchers noted in their study abstract.

“The same two events differed significantly in the number of new mutations seen, raising the possibility that SARS-CoV-2 superspreading might encompass disparate transmission dynamics. Our results highlight the failure of measures to prevent importation into [Massachusetts] early in the outbreak, underscore the role of superspreading in amplifying an outbreak in a major urban area, and lay a foundation for contact tracing informed by genetic data,” they concluded.

Anthony Fauci, MD
Some experts think humankind may be entering a period of increased pandemics. In their report published in Cell, titled, “Emerging Pandemic Diseases: How We Got to COVID-19,” Anthony Fauci, MD (above) Director of the National Institute of Allergy and Infectious Diseases (NIAID), and David Morens, MD, a senior associate professor at Johns Hopkins School of Public Health and Senior Advisor to Fauci, wrote, “One can conclude from this recent experience that we have entered a pandemic era. The causes of this new and dangerous situation are multifaceted, complex, and deserving of serious examination.” (Photo copyright: NIAID.)

Genetic Sequencing and Mutation Tracking

The use of genetic sequencing to trace the virus could inform measures to control the spread in new ways, but currently, only about 0.33% of cases in the United States are being sequenced, MacInnis told WaPo, and that not sequencing samples is “throwing away the crown jewels of what you really want to know.”

Another role that genetic sequencing is playing in this pandemic is in tracking viral mutations. One of the ways that pandemics worsen is when viruses mutate to become deadlier or more easily spread. Scientists are using genetic sequencing to monitor SARS-CoV-2 for such mutations.

A group of scientists at Texas A&M University led by Yue Xing, PhD, published a paper titled, “MicroGMT: A Mutation Tracker for SARS-CoV-2 and Other Microbial Genome Sequences,” which explains that “Although most mutations are expected to be selectively neural, it is important to monitor if SARS-CoV-2 will eventually evolve to be a stronger or weaker infectious agent as time goes on. Therefore, it is vital to track mutations from newly sequenced SARS-CoV-2 genome.”

Another group of researchers have identified such a mutation. “A SARS-CoV-2 variant carrying the Spike protein amino acid change D614G has become the most prevalent form in the global pandemic. Dynamic tracking of variant frequencies revealed a recurrent pattern of G614 increase at multiple geographic levels: national, regional, and municipal,” Bette Korber, PhD and her colleagues wrote in “Tracking Changes in SARS-CoV-2 Spike: Evidence That D614G Increases Infectivity of the COVID-19 Virus,” published in Cell. Korber is a Laboratory Fellow at Los Alamos National Laboratory and visiting faculty at Santa Fe Institute.

Korber’s findings are important because the mutation the scientists identified appears to have a fitness advantage. “Our data show that, over the course of one month, the variant carrying the D614G Spike mutation became the globally dominant form of SARS-CoV-2,” they wrote. Additionally, the study noted, people infected with the mutated variant appear to have a higher viral load in their upper respiratory tracts.

Genetic Sequencing, the Race for Treatments, Vaccines, and Managing Future Pandemics

A vaccine is the best hope for stopping a pandemic, but short of a vaccine, an effective clinical laboratory treatment is the next best thing. And as Dark Daily reported in “Advances in Gene Sequencing Technology Enable Scientists to Respond to the Novel Coronavirus Outbreak in Record Time with Medical Lab Tests, Therapies,” genetic sequencing is quickly becoming a critical tool to develop both.

If, as Fauci and Morens predict, future pandemics are likely, improvements in gene sequencing and analysis will become even more important for tracing, monitoring, and suppressing outbreaks. Clinical laboratory managers will want to watch this closely, as medical labs that process genetic sequencing will, no doubt, be part of that operation.

—Dava Stewart

Related Information:

Genetic Data Show How a Single Superspreading Event Sent Coronavirus Across Massachusetts and the Nation

How the Biogen Leadership Conference in Boston Spread the Coronavirus

How a Premier U.S. Drug Company Became a Virus ‘Super Spreader’

This Cambridge Drug Company Inadvertently Spread the Coronavirus. Now, It’s Creating A ‘Biobank’ To Hopefully Treat the Disease

Phylogenetic Analysis of SARS-CoV-2 in the Boston Area Highlights the Role of Recurrent Importation and Superspreading Events

MicroGMT: A Mutation Tracker for SARS-CoV-2 and Other Microbial Genome Sequences

Tracking Changes in SARS-CoV-2 Spike: Evidence That D614G Increases Infectivity of the COVID-19 Virus

The D614G Mutation in the SARS-CoV-2 Spike Protein Reduces S1 Shedding and Increases Infectivity

Emerging Pandemic Diseases: How We Got to COVID-19 Advances in Gene Sequencing Technology Enable Scientists to Respond to the Novel Coronavirus Outbreak in Record Time with Medical Lab Tests, Therapies

FDA’s Regulatory Hurdles ‘Paralyzed’ Efforts of CLIA-Certified Clinical Laboratories to Offer Alternatives to CDC’s Flawed COVID-19 Test, Part Two of Two

Washington Post investigation outlines scientists’ frustrations in the early days of the pandemic, as they worked to deploy laboratory-developed tests for the novel coronavirus

In the wake of the failed rollout of the Centers for Disease Control and Prevention’s (CDC) COVID-19 diagnostic test last February, many CLIA-certified academic and public health laboratories were ready, and had the necessary resources, to develop their own coronavirus molecular diagnostic tests to help meet the nationwide demand for clinical laboratory testing. However, the response from the US Food and Drug Administration (FDA) was, in essence, “not so fast.”

In this second part of Dark Daily’s two-part e-briefing, we continue our coverage of the Washington Post (WP) investigation that detailed the regulatory hurdles which blocked private laboratories from deploying their own laboratory-developed tests (LDTs) for COVID-19. The report is based on previously unreported email messages and other documents reviewed by the WP, as well as the newspaper’s exclusive interviews with scientists and officials involved.

CDC ‘Health Emergency’ Declaration Stifled Laboratory-Developed Tests

The CDC’s COVID-19 test kits began arriving at public health laboratories on February 8, just 18 days after the first case of the novel coronavirus was confirmed in the US. As the WP noted in an earlier analysis, titled, “What Went Wrong with Coronavirus Testing in the US,” the CDC’s decision to develop its own test was not surprising. “The CDC will develop [its] own test that is suited to an American healthcare context and the regulations that exist here,” explained Jeremy Konyndyk, Senior Policy Fellow at the Center for Global Development. “That’s how we normally would do things.”

But state and local public health laboratories quickly discovered that the CDC test kits were flawed due to problems with one of the reagents. While numerous academic, research, and commercial labs had the capability to produce their own COVID-19 PCR tests, FDA rules initially prevented them from doing so without a federal Emergency Use Authorization (EUA).

The bureaucratic hurdles arose due to Health and Human Services Secretary Alex Azar’s January 31 declaration that COVID-19 was a “health emergency” in the US. By doing so, HHS triggered a mandate that requires CLIA-certified labs at universities, research centers, and hospitals to seek an EUA from the FDA before deploying any laboratory-developed tests.

Scientists, Clinical Laboratories Frustrated by Bureaucratic Delays and Red Tape

To make matters worse, the EUA process was neither simple nor fast, which exasperated lab scientists and clinical laboratory administrators. “In their private communications, scientists at academic, hospital, and public health labs—one layer removed from federal agency operations—expressed dismay at the failure to move more quickly, and frustration at bureaucratic demands that delayed their attempts to develop alternatives to the CDC test,” wrote the WP investigators.

In a Feb. 27 email to other microbiologists, Marc Couturier, PhD, Medical Director at ARUP Laboratories, a national reference laboratory network located in Utah, voiced his irritation with the red tape that stymied private laboratory development of COVID-19 tests. He wrote, “We have the skills and resources as a community, but we are collectively paralyzed by a bloated bureaucratic/administrative process,” reported the WP.

Keith Jerome, MD, PhD (above), Head of the Virology Division at the Fred Hutchinson Cancer Research Center in Seattle, maintains federal regulations muted one of the nation’s greatest assets in the fight against COVID-19. “The great strength the US has always had, not just in virology, is that we’ve always had a wide variety of people and groups working on any given problem,” he told MIT Technology Review. “When we decided all coronavirus testing had to be done by a single entity, even one as outstanding as CDC, we basically gave away our greatest strength.” (Photo copyright: Jonathan Hamilton/NPR.)

‘FDA Should Not Treat Labs Like They Are Creating Commercial Products’

Perhaps no scientist was more frustrated by the bureaucratic runaround than Alex Greninger, MD, PhD, a clinical pathologist and Assistant Professor at the University of Washington. Greninger is Assistant Director of the UW’s clinical virology laboratory, which had begun developing a test for the novel coronavirus as soon as the World Health Organization (WHO) China Country Office reported that it had been “informed” about the emergence in China of a “pneumonia of unknown cause.”

According to Kaiser Health News (KHN), Greninger was able to identify one of the nation’s first cases of community-acquired COVID-19 by taking “advantage of a regulatory loophole that allowed the lab to test samples obtained for research purposes from UW’s hospitals.”

But navigating the EUA process was a different story, Greninger told the WP. He spent more than 100 hours filling out forms and collecting information needed for the EUA application. After emailing the application to the FDA, Greninger received a reply containing eCopy Guidance telling him he needed to resubmit the information to the Document Control Center (DCC) at the Center for Devices and Radiological Health (CDRH), a federal agency Greninger knew nothing about. Another FDA rule required that the submission be copied to a hard disk and mailed to the DCC.

In an interview with ProPublica, Greninger stated that after he submitted his COVID-19 test—which copies the CDC protocol—an FDA reviewer told him he would need to prove the test would not show a positive result for someone infected with either a SARS or MERS coronavirus. The first SARS coronavirus disappeared in mid-2003 and the only two cases of MERS in the US were diagnosed in 2014. Greninger told ProPublica it took him two days to locate a clinical laboratory that could provide the materials he needed.

Greninger maintains the FDA should not treat all clinical laboratories as though they are making a commercial product. “I think it makes sense to have this regulation when you’re going to sell 100,000 widgets across the US. That’s not who we are,” he told ProPublica.

FDA Changes Course

Under pressure from clinical laboratory scientists and medical doctors, by the end of February the FDA had issued new policy that enabled CLIA-certified laboratories to immediately use their validated COVID-19 diagnostics while awaiting an EUA. “This policy change was an unprecedented action to expand access to testing,” said the FDA in a statement.

Since then, the FDA has continued to respond—albeit slowly—to scientists’ complaints about regulations that hampered the nation’s COVID-19 testing capacity.

Clinical laboratory leaders and pathologists involved in testing for the SARS-CoV-2 coronavirus should monitor the FDA’s actions and be aware of when and if certain temporary changes the agency implemented during the early days of the COVID-19 pandemic become permanent.

To read part one of our two-part coverage of the Washington Post’s investigation, click here.

—Andrea Downing Peck

Related Information:

Inside the Coronavirus Testing Failure: Alarm and Dismay among the Scientists who Sought to Help

Contamination at CDC Lab Delayed Rollout of Coronavirus Tests

Pneumonia of Unknown Cause–China

How Intrepid Lab Sleuths Ramped Up Tests as Coronavirus Closed In

Key Missteps at the CDC Have Set Back Its Ability to Detect the Potential Spread of Coronavirus

Why the CDC Botched Its Coronavirus Testing

Coronavirus (COVID-19) Update: FDA Issues New Policy to Help Expedite Availability of Diagnostics

Coronavirus (COVID-19) Update: FDA Expedites Review of Diagnostic Tests to Combat COVID-19

 

;