News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

PwC Survey Finds 50% of Companies Plan Layoffs and 83% Intend to Move Forward with Streamlined Workforces

Amid cost pressures, healthcare providers also plan to cut staff though some jobs are plentiful; adequate staffing at medical laboratories continues to be a challenge

Thanks to the COVID-19 pandemic and subsequent “Great Resignation,” masses of people have left the workforce and companies large and small in all industries are struggling to retain employees. Clinical laboratories have been particularly hard hit with no relief in sight.

Now comes the results of a PricewaterhouseCoopers (PwC) survey which shows 50% of US companies in various industries—including major healthcare providers—plan to lay off employees. And 83% of organizations intend to move forward with a “streamlined workforce,” according to the latest PwC Pulse: Managing Business Risks in 2022 report.

How this will affect the workload on remaining hospital and medical laboratory staff is clear. And healthcare consumers may not take well to healthcare provides running leaner and with fewer staff than they currently do.

Nevertheless, the PwC survey results “illustrate the contradictory nature of today’s labor market, where skilled workers can still largely name their terms amid talent shortages even as companies look to let people go elsewhere,” Bloomberg wrote on the  CPA Practice Advisor website.

Bhushan Sethi

“Organizations are still walking a tightrope when it comes to talent as we begin to see the longer-term impacts of the ‘Great Resignation.’ Finding the proper balance between investing in specialized talent, managing headcount costs, and driving productivity and morale will remain a top focus,” said Bhushan Sethi (above), People and Organization Joint Global Leader at PwC and an adjunct professor at NYU Stern School of Business in a PwC news release. Clinical laboratories are finding it particularly challenging to fill staff positions across all areas of lab operations. (Photo copyright: PwC.)

Healthcare Has Biggest Challenges, says PwC

Clinical laboratory leaders and pathologist groups are well aware of the unique financial pressures on healthcare systems and medical labs, as well as shortages of pathologists, medical technologists, clinical laboratory scientists, information technology (IT) professionals, and other healthcare workers.

“Healthcare is seeing bigger talent challenges than other industries and is more focused on rehiring employees who have recently left,” the PwC report acknowledged. This is the second Pulse survey PwC conducted in 2022. The 722 respondents included leaders working in human capital and finance.  

Finding Right Talent, Focusing on Growth, Automation

Finding the right employees is so important to companies that PwC ranks “talent acquisition” as the second highest risk (38%) behind cyber-attacks (40%).

“Finding the right talent continues to be a challenge for business leaders,” PwC said. “After a frenzy of hiring and a tight labor market over the past few years, executives see the distinction between having people and having people with the right skills.”

Unlike the high-touch and personal nature of healthcare, industries such as consumer technology, media, and telecommunications can turn to automation to alleviate staffing struggles. And that is what nearly two-thirds, or 63%, of companies in those sectors, aim to do, PwC said.

Other survey talent findings:

  • 50% of companies plan layoffs.
  • 46% are dropping or eliminating sign-on bonuses.
  • 44% are rescinding job offers.

Conversely, the surveyed executives also told PwC they are “cautiously optimistic” and plan on growing and investing even as the economy gives mixed signals:

  • 83% of companies are focused on growth.
  • 70% plan an acquisition.
  • 53% aim to invest in digital transformation, 52% in IT, 49% in cybersecurity and privacy, and 48% in customer experience.

“After more than two years dealing with uncertainty related to the pandemic, business leaders recognize the urgent need to focus on growth in order to compete, and they’re zeroing in on what they can control,” PwC said.

New Remote Work Programs, Reduction in Real Estate Investing, Big Tech

Although companies report having more than enough physical office space, many (42%) have launched remote work programs:

  • 70% have expanded or plan to increase “permanent” remote work options as jobs permit.
  • 22% are reducing real estate investment (financial services and healthcare industries lead the way with 30% and 29%, respectively, saying real estate buys are cooling off).

“While companies continue to invest in many areas of the business, they’re scaling back the most in real estate and capex ex [capital expenditure]. After two years of remote work, many companies simply need less space, and they’re allocating capital accordingly,” the PwC report noted.

In a somewhat parallel release to PwC’s findings, news sources are reporting reductions in real estate and staff at high-profile Big Tech companies.

Meta Platforms, Inc. in Menlo Park, Calif. (formerly Facebook Inc.), is closing one of its New York offices and cutting back on plans to expand two other locations in the city, the Observer reported.

Business Insider reported, “More than 32,000 tech workers have been laid off in the US till July, including at Big Tech companies like Microsoft and Meta (formerly Facebook), and the worst has not been over yet for the tech sector that has seen massive stock sell-off.”

According to Forbes, “San Francisco-based electronic signature company DocuSign will lay off 9% of its more than 7,400 employees (roughly 670 employees), the company announced in a Securities and Exchange filing Wednesday, saying the cuts are ‘necessary to ensure we are capitalizing on our long-term opportunity and setting up the company for future success.’”

And Bloomberg recently reported that Intel is planning to layoff thousands of people “around the same time as its third-quarter earnings report on Oct. 27.”

Healthcare Providers Plan Layoffs, Seek IT Pros

Meanwhile, major healthcare provider networks also are planning staff cuts amid service closures, rising costs, and other issues, according to Becker’s Hospital Review:

“Our health system, like others around the nation, is facing significant financial pressures from historic inflation, rising pharmaceutical and labor costs, COVID-19, expiration of CARES Act funding, and reimbursement not proportional with expenses,” BHSH said in a statement shared with Becker’s.

Amidst these layoffs, however, IT jobs in healthcare seem to be growing. According to Becker’s Health IT, some healthcare providers have posted information technology openings:

So, though it appears IT positions continue to expand, clinical laboratory leaders and pathology practice managers may want to prepare now for dealing with customers’ response to leaner healthcare systems overall.

Donna Marie Pocius

Related Information:

PwC Pulse: Managing Business Risks in 2022

Layoffs are Being Planned at Half of US Companies, PwC Survey Shows

Business Executives Remain Bullish about Their Ability to Manage Turbulent Conditions, according to New PwC Survey

Meta Is Closing a Manhattan Office as It Consolidates Its New York City Presence

50% of Companies Planning Job Cuts Amid Economic Downturn: Report

Ascension to Close Hospital, Lay Off 133 Workers

Microsoft Reportedly Cuts Nearly 1,000 Employees—Here Are the Biggest US Layoffs This Year

Intel Is Planning Thousands of Job Cuts in Face of PC Slump

Hospitals Cut Jobs to Resuscitate Finances

IT Job Openings at Mayo, Northwell, CommonSpirit, and Providence

Kalorama Report Analyzes Global EMR/EHR Market as Tech Giants Apple, Google, and Microsoft Prepare to Launch Their Own Offerings. Will This Alter Current Conditions for Clinical Laboratories and Pathologists?

While approaches differ between the three companies, heavy investment in EMR/EHR and other HIT solutions could signal significant changes ahead for a market currently dominated by only a few major developers

If healthcare big data is truly a disruptive force in healthcare’s transformation, then a big battle looms for control of that data. Some experts say that the companies now dominating the electronic health record (EHR) market will soon face tough competition from the world’s biggest tech companies.

Until recently, most clinical laboratories, anatomic pathology groups, hospitals, and other healthcare providers have depended on EHR systems from just a handful of health information technology (HIT) developers. But tech giants Google, Apple, and Microsoft have been filing hundreds of HIT related patents since 2013 and appear poised to compete on a large scale for a chunk of the EMR/EHR/HIT market, according to coverage in EHR Intelligence of Kalorama Information’sEMR 2018: The Market for Electronic Medical Records” report.

How this will impact medical laboratories and pathology practices remains to be seen. Labs are sure to be influenced by coming events, since clinical laboratory test data represents the largest proportion of an individual patient’s permanent medical record. It’s important to note, though, that while most EHR/HIT developers have been motivated by federal incentives, Google (NASDAQ:GOOG), Apple (NASDAQ:AAPL), and Microsoft (NASDAQ:MSFT) are motivated by consumer demand, which increasingly dictates the direction of health technology development.

Thus, they may be better positioned to compete moving forward, as patients, physicians, and hospitals turn to precision medicine and value-based care for improved outcomes and increased revenues.

“The EMR efforts have moved hospitals from paper to digital records,” Bruce Carlson (above), Publisher of Kalorama Information, told HIT Infrastructure. “The next step is for tech giants to glean the data and improve upon that infrastructure. We’ll be talking about EHR in different ways in the next ten years.” (Photo copyright: Twitter.)

EMR/EHR Market Poised for Disruption

According EHR Intelligence, as of 2017, 97% of all US non-federal acute care hospitals and 84% of US hospitals had adopted an EHR system. Of these hospitals, more than half (50.5%) use products from just two developers—Cerner or Epic. That’s according to Health Data Management’s coverage of the KLAS report “US Hospital EMR Market Share 2017.”

However, recent interest in HIT and EHR systems by major Silicon Valley tech companies could lead to potential disruptions in the current state of the market. According to The New York Times, in the first 11 months of 2017, 10 of the largest US technology companies were involved in healthcare equity deals worth $2.7-billion. This marks a drastic increase over the 2012 figure of $277-million.

Though each company is approaching the market differently, Google, Microsoft, and Apple are all working on projects that could influence how both consumers and healthcare professionals interact with and utilize medical record data.

Of the three, Apple is the most consumer-centric with their Apple Health personal health record (PHR) integration into Apple iOS for iPhones and iPads. Microsoft, however, is working on developing analytics tools and storage solutions aimed at healthcare providers in general. And Google, through its parent company Alphabet, is focusing on data processing and storage.

Amazon also is working on its own HIT project which it calls 1492. While details are scant, HIT Infrastructure reports that the project is focused on interoperability among disparate EHR systems to improve sharing of protected health information (PHI) between providers, patients, and other healthcare providers, such as clinical labs and pathology groups. HIT Infrastructure also reported on rumors of Amazon branching into telemedicine using their Amazon Echo and Alexa platforms.

Security Concerns and Opportunities for Clinical Laboratories

According to Computerworld’s coverage of IDC research, by 2020, 25% of patients are expected to be taking part in ‘bring your own data” healthcare scenarios. Tech-savvy medical laboratories could find opportunities to interact directly with patients and encourage follow-through on test orders or follow-up on routine testing.

However, shifting protected health information to devices carried by consumers is not without risks.

“How do I know the data won’t make its way to some cloud somewhere to be shared, sold, etc.” Jack Gold, Principal Analyst with J. Gold Associates, told Computerworld. “And if I rely on an app to tell me what to do—say, take my meds—and it somehow gets hacked, can it make me sick, or worse?”

These are important questions and developments, which Dark Daily has covered in other recent e-briefings. (See, “Apple Updates Its Mobile Health Apps, While Microsoft Shifts Its Focus to Artificial Intelligence. Both Will Transform Healthcare, But Which Will Impact Clinical Laboratories the Most?” July 25, 2018.)

Nevertheless, with tech giants already developing products for the consumer market and healthcare provider industry, it’s a given consumers will soon gain greater access to their own healthcare information. Whether patients will ultimately embrace it, how they will use it, and how developers will interact with the data, is still undefined. But it’s coming and clinical laboratories should be prepared.

—Jon Stone

Related Information:

Apple to Launch Health Records App with HL7’s FHIR Specifications at 12 Hospitals

How Google, Microsoft, Apple Are Impacting EHR Use in Healthcare

Microsoft, Apple, Google Secure HIT Infrastructure Patents

How Big Tech Is Going after Your Health Care

Amazon Secret Healthcare IT Tech Team Focuses on EHRs, Alexa

Apple’s Health Record API Released to Third-Party Developers; Is It Safe?

Apple, Cerner and Microsoft Are Interested in Buying AthenaHealth: Here’s Why This CEO Says They Won’t

Apple Says iOS Health Records Has over 75 Backers, Uses Open Standards

Report: Health Systems Share Apple Health Records Feedback

Apple Is Officially in the EHR Business. Now What?

Why Apple’s Move on Medical Records Marks a Tectonic Shift

Slideshow Where the Top 8 EMRs Are Deployed

Apple Updates Its Mobile Health Apps, While Microsoft Shifts Its Focus to Artificial Intelligence. Both Will Transform Healthcare, but Which Will Impact Clinical Laboratories the Most?

Apple’s Update of Its Mobile Health App Consolidates Data from Multiple EHRs and Makes It Easier to Push Clinical Laboratory Data to Patients

Could Clinical Laboratories and Pathologists Have a New Use for DNA as a Data Storage Technology?

Researchers in Boston are working to develop DNA as a low-cost, effective way to store data; could lead to new molecular technology industries outside of healthcare

Even as new insights about the role of DNA in various human diseases and health conditions continue to tumble out of research labs, a potential new use for DNA is emerging. A research team in Boston is exploring how to use DNA as a low-cost, reliable way to store and retrieve data.

This has implications for the nation’s clinical laboratories and anatomic pathology groups, because they are gaining experience in sequencing DNA, then storing that data for analysis and use in clinical care settings. If a way to use DNA as a data storage methodology was to become reality, it can be expected that medical laboratories will have the skillsets, experience, and information technology infrastructure already in place to offer a DNA-based data storage service. This would be particularly true for patient data and healthcare data.

Finding a way to reduce the cost of data storage is a primary reason why scientists are looking at ways that DNA could be used as a data storage technology. These scientists and technology developers seek ways to alleviate the world’s over-crowded hard drives, cloud servers, and databases. They hope this can be done by developing technologies that store digital information in artificially-made versions of DNA molecules.

The research so far suggests DNA data storage could be used to store data more effectively than existing data storage solutions. If this proves true, DNA-based data storage technologies could play a key role in industries outside of healthcare.

If so, practical knowledge of DNA handling and storage would be critical to these companies’ success. In turn, this could present unique opportunities for medical laboratory professionals.

DNA Data Storage: Durable but Costly

Besides enormous capacity, DNA-based data storage technology offers durability and long shelf life in a compact footprint, compared to other data storage mediums.

“DNA has an information-storage density several orders of magnitude higher than any other known storage technology,” Victor Zhirnov, PhD, Chief Scientist and Director, Semiconductor Research Corporation, told Wired.

However, projected costs are quite high, due to the cost of writing the information into the DNA. However, Catalog Technologies Inc. of Boston thinks it has a solution.

Rather than producing billions of unique bits of DNA, as Microsoft did while developing its own DNA data storage solution, Catalog’s approach is to “cheaply generate large quantities of just a few different DNA molecules, none longer than 30 base pairs. Then [use] billions of enzymatic reactions to encode information into the recombination patterns of those prefab bits of DNA. Instead of mapping one bit to one base pair, bits are arranged in multidimensional matrices, and sets of molecules represent their locations in each matrix.”

The Boston-based company plans to launch an industrial-scale DNA data storage service using a machine that can daily write a terabyte of data by leveraging 500-trillion DNA molecules, according to Wired. Potential customers include the entertainment industry, federal government, and information technology developers.

Catalog is supported by $9 million from investors. However, it is not the only company working on this. Microsoft and other companies are reportedly working on DNA storage projects as well.

“It’s a new generation of information storage technology that’s got a million times the information density, compared to flash storage. You can shrink down entire data centers into shoeboxes of DNA,” Catalog’s CEO, Hyunjun Park, PhD (above center, between Chief Science Officer Devin Leake on left and Milena Lazova, scientist, on right), told the Boston Globe. (Photo copyright: Catalog.)

Microsoft, University of Washington’s Synthetic DNA Data Storage

Microsoft and researchers at the University of Washington (UW) made progress on their development of a DNA-based storage system for digital data, according to a news release. What makes their work unique, they say, is the large-scale storage of synthetic DNA (200 megabytes) along with the ability to the retrieve data as needed.

“Synthetic DNA is durable and can encode digital data with high density, making it an attractive medium for data storage. However, recovering stored data on a large-scale currently requires all the DNA in a pool to be sequenced, even if only a subset of the information needs to be extracted,” the researchers wrote in their paper published in Nature Biotechnology.

“Here, we encode and store 35 distinct files (over 200 megabytes of data ) in more than 13-million DNA oligonucleotides and show that we can recover each file individually and with no errors, using a random access approach,” the researchers explained.

“Our work reduces the effort, both in sequencing capacity and in processing, to completely recover information stored in DNA,” Sergey Yekhanin, PhD, Microsoft Senior Researcher, told Digital Trends.

Successful research by Catalog, Microsoft, and others may soon lead to the launch of marketable DNA data storage services. And medical laboratory professionals who already know the code—the life code that is—will likely find themselves more marketable as well!

—Donna Marie Pocius

Related Information:

The Rise of DNA Data Storage

The Next Big Thing in Data Storage is Actually Microscopic

Catalog Hauls in $9 Million to Make DNA-Based Data Storage Commercially Viable

UW and Microsoft Researchers Achieve Random Access in Large-Scale DNA Data Storage

Random Access in Large-Scale DNA Data Storage

Microsoft and University of Washington Show DNA Can Store Data in Practical Way

Apple May Be Developing Mobile Device Technology to Monitor User’s Health and Transmit Data in Real Time

Industry analysts speculate that Apple might be planning to enter the EHR and healthcare related markets by transforming mobile technologies into gateway devices connected to providers’ EHR systems and patient data

Imagine a mobile device that monitors vitals while connected in real-time to healthcare providers, electronic health records (EHR), and clinical laboratories. One that measures the physical condition and emotional state of the user by casting light onto skin, and then records and transmits it with a swipe of the touch screen. Would such an innovation change how patients expect to interact with their providers? And how physicians, anatomic pathologists, and medical laboratories receive data from their patients? Certainly.

This is why US patents recently granted to Apple have caught the attention of industry analysts. Some speculate that the tech giant is planning to enter the mobile healthcare monitoring device, EHR, and healthcare data storage markets, as reported at Becker’s Health IT and CIO Review and Patently Apple.

How this would affect medical laboratories and anatomic pathology groups remains to be seen. But where Apple goes, industries follow. Thus, it’s worth following the company’s activities in the healthcare market.

Bringing Clinical Data, Medical Laboratory Test Results, to iPhone

Mobile devices launched the era of consumer-grade fitness wearables. It’s not uncommon for a smart phone or watch to capture and store a range of health data generated by users. This can include everything from heart rate and sleeping patterns to dietary logs and fertility tracking. But, to date, much of that healthcare data is user generated and does not integrate in any meaningful way with the majority of EHR systems. Nor does it enable communications with primary care providers or diagnostic services—such as medical laboratories or pathology groups.

This may soon change.

According to a CNBC report, a unit at Apple is “in talks with developers, hospitals, and other industry groups about bringing clinical data—such as detailed lab results and allergy lists—to the iPhone, according to a half-dozen people familiar with the team.”

The report states that Apple:

·       “Wants the iPhone to become the central bank for health information;

·       “Is looking to host clinical information, such as labs and allergy lists, and not just wellness data; and,

·       “Is talking with hospitals, researching potential acquisitions, and attending health IT industry meetings.”

Christina Farr, the report’s author, predicts that Apple could be preparing to apply its music industry model to the healthcare industry by, “Replacing CDs and scattered MP3s with a centralized management system in iTunes and the iPod—in the similarly fragmented and complicated landscape for health data.”

Former National Coordinator of Health IT for the Department of Health and Human Services, Farzad Mostashari, MD, ScM, rather enthusiastically noted the significance of the move, stating, “If Apple is serious about this, it would be a big f—ing deal.”

At a special event in September, Apple COO Jeff Williams (above) announced Stanford Medicine’s Apple Heart Study, which uses “data from Apple Watch to identify irregular heart rhythms, including those from potentially serious heart conditions like atrial fibrillation,” and, according to Williams, “notify users.” This is just one of several healthcare-related study collaborations Apple is exploring. It is not known if Apple is looking to collaborate with medical laboratories. (Photo copyright: Apple.)

Apple’s History with Healthcare Related Technology

Taken as a single event, these speculations might not convince industry leaders. However, Apple’s long-term investments and acquisitions show a clear trend toward integrating healthcare data into the Apple ecosystem.

Healthcare IT News noted that from 2014 to 2017 Apple:

·       Unveiled three different APIs—HealthKit, ResearchKit, and CareKit—designed to help capture, analyze, communicate, and integrate healthcare data with the Apple iOS and watchOS ecosystems;

·       Hired several MDs, including: Stephen Friend, MD; Rajiv Kumar, MD; Mike Evans, MD; Ricky Bloomfield, MD; and Sumbul Ahmad Desai, MD; and,

·       Engaged with the Argonaut Project and Health Gorilla (a centralized hub of healthcare data and information) suggesting a shift from wearables and basic device-based biometrics toward in-depth reporting, interoperability, and access to third-party healthcare data repositories—such as those in a person’s EHR or medical laboratory portal.

The Future of EHRs or Another Failed Attempt at Innovation?

Apple isn’t the only company to attempt such a system. Other efforts include Microsoft’s Health Vault and Google’s now shuttered Google Health. Another CNBC article notes that Amazon is also researching healthcare related options. “The new team is currently looking at opportunities that involve pushing and pulling data from legacy electronic medical record systems,” stated Farr. “The group is also exploring health applications for existing Amazon hardware, including Echo and Dash Wand.”

However, where most services fail to gain traction is user engagement. After all, if a system isn’t widely used or fails to offer benefits over existing systems, patients and service providers are not likely to go through the process of switching systems. Speaking with CNBC, Micky Tripathi, President and CEO of the Massachusetts eHealth Collaborative notes, “At any given time, only about 10% to 15% of patients care about this stuff. If any company can figure out engagement, it’s Apple.”

According to comScore, 85.8-million people over the age of 13 already own an iPhone in the US. The upcoming facial recognition features on Apple’s iPhone X might also provide the added security needed for those questioning the safety of their data. Should Apple succeed, communicating data between clinical laboratories, physicians, and patients might be both convenient and fast. More importantly, it might be the universal platform that finally provides health data access across the entire care continuum, while simultaneously improving access to providers and empowering healthcare consumers.

Of course, this is a few years from reality. But, we can speculate … would innovative medical laboratories have their patients’ lab test data hosted in the Cloud in such a way that patients and providers could access it securely, along with other protected clinical records?

Imagine how this would enable patients to have their complete medical record traveling with them at all times.

—Jon Stone

Related Information:

Could Apple Be Taking a Bite Out of EHRs?

Could Amazon or Apple Actually Make a Dent In the EHR Market?

Apple Extends Its Reach into Healthcare

Electronic device that computes health data

Apple Is Quietly Working on Turning Your iPhone Into the One-Stop Shop for All Your Medical Info

Wait! What? Amazon and Apple Eye Building EHRs

Apple Is Working with This Small Start-Up to Change How We Track Our Health

Timeline: How Apple Is Piecing Together Its Secret Healthcare Plan

Amazon Has a Secret Health Tech Team Called 1492 Working on Medical Records, Virtual Doc Visits

With Apple Consulting Argonaut Project on Health Records, Interoperability Could Get the Push It Needs

Apple Enlists Help of Startup Health Gorilla to Add Diagnostic Data to iPhones

IBM and Mount Sinai Researchers Develop Innovative Medical Lab-on-a-Chip Solution

Clinical laboratories and pathology groups may eventually use these devices to detect minute quantities of biomarkers

IBM has regularly declared its interest in being a player in the field of healthcare big data. Now comes news that the information technology giant wants to develop lab-on-a-chip (LOC) technology that can handle different types of clinical laboratory and anatomic pathology tests.

As reported in Nature Nanotechnology, researchers at IBM are working with a team from Mount Sinai Health System. Together, they created a lab-on-a-chip device capable of separating biomolecules as small as 20nm in length from urine, saliva, or blood samples without the need for specialized clinical laboratory equipment. The technology is called nanoDLD.

Current testing of this lab-on-a-chip focuses on exosomes and cancer research. However, researchers note that the asymmetric pillar array on their silicon chip can also separate DNA, viruses, and protein complexes. With further development, they hope to separate particles down to 10nm in length. This would allow isolation of specific proteins. (more…)

;