News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Paper Microfluidic Devices Offer New Potential for Affordable Point-of-Care Tests for Use in Developing Countries That Have Few Clinical Laboratories

Paper-based devices could perform complex, multistep diagnostic tests at a fraction of the cost of traditional medical laboratory analysis

Many research teams are racing to create paper-based devices for medical laboratory tests. Their primary goal is develop a cheap, fast, reliable way to perform diagnostic testing in third world settings, where modern clinical laboratories are few and far between. One development team is working to combine lab-on-a-chip technologies with the low cost of paper-based platforms.

Meanwhile, over the past decade, point-of-care testing (POCT) has revolutionized diagnosis and treatment options for a myriad of conditions. In developing regions or remote areas, low-cost POCT improves accessibility to vital tests for infectious diseases, such as HIV, Malaria, and Ebola, as well as acute medical conditions, such as sepsis.

In the past eight years, Dark Daily has reported many times on the emergence of new POCT devices. From lactic acid screening to the lab-in-a-needle, which is used for detecting liver toxicity, the ability to produce a quick and accurate diagnosis without intensive clinical laboratory testing is growing.

However, one area where many POCT devices face challenges is in surviving extended environmental exposure. This does not pose an issue in major research hospitals or health systems. However, the consequences can be severe when considering the often harsh, resource-limited conditions of developing countries—one area in which POCT stands to offer the greatest value. (more…)

Sound Wave Acoustic Tweezers Locate and Isolate Circulating Tumor Cells in Liquid Biopsies; Could Lead to Less Invasive Cancer Diagnostics and Treatments

Pathologists will be interested to learn that this latest version of the acoustic tweezer device requires about five hours to identify the CTCs in a sample of blood

Medical laboratory leaders and pathologists are well aware that circulating tumor cells (CTCs) released by primary tumors into the bloodstream are fragile and easily damaged. Many studies have sought to find ways to separate CTCs from surrounding cells. Such a process could then be used as an early-detection biomarker to detect cancer from a sample of blood.

One team of researchers believe it has a way to accomplish this. These researchers are using sound waves to gently detect and isolate CTCs in blood samples. In turn, this could make it possible to diagnose cancer using “liquid biopsies” as opposed to invasive conventional biopsies.

Researchers from Carnegie Mellon University (CMU) in collaboration with researchers from the Massachusetts Institute of Technology (MIT) and Pennsylvania State University (Penn State) have developed a method for using acoustic tweezers and sound waves to separate blood-borne cancer cells from white blood cells. The research team believes this new device could one day replace invasive biopsies, according to a CMU article. (more…)

Sleek ‘Lab in a Needle’ Is an All-in-One Device That Detects Liver Toxicity in Minutes during a Study, Showing Potential to Supplant Some Medical Laboratory Tests

Researchers’ prototype uses lab-on-a-chip technology and seems to do it all, from collection and analysis to results in minutes and in the palm of your hand

Here’s a diagnostic workhorse that can also easily slip inside the pocket of a doctor’s white coat. The slim device, created and reported by researchers, integrates a clinical laboratory’s workflow from collecting samples to analyzing them and reporting results in minutes.

The device is dubbed “lab in a needle” by researchers at Houston Methodist and their collaborators at Singapore’s Nanyang Technological University (NTU) and the Singapore Institute of Manufacturing Technology (SIMTech). The recently announced study focused on liver toxicity. But the research team says in a news statement that their medical laboratory-in-a-needle has potential to diagnose and monitor therapies for many health conditions in settings well beyond the medical laboratory and hospital.

For clinical laboratory leaders and pathologists, the prototype can be seen as another step forward in efforts to develop more sophisticated point-of-care testing (POCT) that incorporate miniature lab-on-a-chip (LOC) technologies. Mass production could bring the tiny mobile lab’s capabilities to remote and rural communities where low cost and ease of use are essential. (more…)

Smartphone “Dongle” Achieves Capabilities of Big Clinical Laboratory Analyzers: Diagnoses Three Diseases at Once from Single Drop of Blood

This breakthrough in technology miniaturization holds great promise for improving public health, but portends a disruptive future ahead for the medical labs 

Is the medical laboratory industry ready for a handheld device that can do immunoassay testing without requiring any stored energy? The secret of this device, already undergoing field trials in Rwanda, is that it uses a smartphone accessory, or “dongle,” to capture and transmit the results of the lab tests.

This innovative smartphone device accurately diagnoses HIV and syphilis with a finger prick of blood and displays the results on the smartphone screen within 15 minutes, according to a Columbia Engineering News Service report.

An Ideal Device for Field Work in Resource Poor Areas

It’s mobile and inexpensive, making it an ideal diagnostic tool for use in poor, remote regions of the world. According to World Health Organization (WHO) statistics, the highest percentages of all sexually transmitted disease (STD) cases occur in developing and underdeveloped nations. (more…)

New Microfluidic Blood-draw Device Could Replace Needle Sticks and Venipunctures at Medical Laboratories

By placing this low-cost, disposable device developed at the University of Wisconsin-Madison on their arms or abdomens, patients can collect their own blood at home in minutes

For more than two years, the nation’s media have been captivated by Theranos CEO Elizabeth Holmes’ vision of offering patients who need blood tests a finger stick collection instead of a venipuncture. Meanwhile, in research labs across the nation, there are credible efforts to develop ways to collect medical laboratory test specimens that require no needles at all.

On such effort may soon enter the market. It is an innovative, needleless blood-collection device called HemoLink developed by a research team at the University of Wisconsin-Madison. Users simply place a device with the diameter of a golf ball against their arms or abdomens for two minutes. During that time, the device draws blood from capillaries into a small container. Patients would then mail the tube of collected blood to a medical laboratory for analysis.

This non-threatening device is ideal for children. However, patients who require recurrent blood tests to monitor health conditions would also benefit, as it would save them frequent trips to clinical laboratories for blood draws using traditional needle-stick methods. (more…)

;