News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

University of Southern California Researchers Develop Vaccine That Boosts Immunity and Helps Patients Avoid Deadly Infections While in Hospitals

New vaccine could give clinical laboratories and antimicrobial stewardship programs the tool they need to dramatically reduce hospital-acquired infections

Healthcare providers and clinical laboratories continue to struggle against hospital-acquired infections (HAIs) and ever-evolving antimicrobial resistant (AMR) bacteria. But now, the University of Southern California (USC) has developed and patented an experimental vaccine that has been shown to protect against so-called “superbugs,” such as methicillin-resistant Staphylococcus aureus (MRSA), an AMR bacteria that causes potentially deadly staph infections in hospitals and other healthcare settings.

The innovative approach focuses on bolstering the patient’s immune system itself, rather than relying on proteins to fight infections, according to a USC Today article. 

Developed by senior study author Brad Spellberg, MD, Chief Medical Officer at the Los Angeles General Medical Center, and colleagues, “The experimental vaccine takes an entirely different approach: It gooses the body’s preexisting supply of pathogen-gobbling immune cells called macrophages, which engulf and digest bacteria, fungi, and other bad actors. These activated fighters, found in all tissues, quickly neutralize incoming invaders which might otherwise multiply rapidly and overwhelm the body’s defenses,” USC Today reported. 

“This is very different from developing new antibiotics,” Jun Yan, a doctoral student at Keck School of Medicine and the study’s first author, told USC Today. “This is using our own immune system to fight against different superbugs, which is a different approach than everybody else.”

To develop the vaccine [the USC researchers] formed a biotechnology startup called ExBaq LLC in Bethesda, Md.

They published their findings in the journal Science Translational Medicine title, “A Protein-Free Vaccine Stimulates Innate Immunity and Protects against Nosocomial Pathogens.”

Ishwar K. Puri, PhD

“The pandemic stimulated unprecedented innovation in vaccine development, where federal funding and university-industry partnerships were game changers for translating promising discoveries from academic labs for the good of all,” said Ishwar K. Puri, PhD (above), senior vice president of research and innovation at USC. “We are both pleased and proud of the critical support the USC Stevens Center provided to enable the development of ExBaq’s experimental vaccine that protects vulnerable populations from serious infections.” Clinical laboratories that work with hospitals in the fight against hospital-acquired infections understand the importance of this discovery. (Photo copyright: University of Southern California.)

USC Vaccine Details

The USC team developed a “protein-free vaccine, composed of aluminum hydroxide, monophosphoryl lipid A, and fungal mannan, that stimulates the innate immune system and confers protection,” the researchers wrote in Science Translational Medicine.

“Tested in two independent labs, the vaccine works within 24 hours and lasts for up to 28 days. In lab models, the number of pathogen-eating immune cells in the blood increased dramatically, and survival time of invasive blood and lung infections improved. Early data suggest that a second dose could extend the window to prevent infection,” USC Today reported.

Unlike anything currently available, the new vaccine focuses on boosting the body itself instead of creating antibodies against certain pathogens. A mere dose of the vaccine is described to “provide rapid protection against nine different bacteria and fungi species,” USC Today noted.

“It’s an early warning system. It’s like Homeland Security putting out a terror alert. Everybody, keep your eyes open. Keep an eye out for suspicious packages. You’re alerting the soldiers and tanks of your immune system. The vaccine activates them,” Spellberg told USC Today

“The vaccine acted through stimulation of the innate, rather than the adaptive, immune system, as demonstrated by efficacy in the absence of lymphocytes that were abrogated by macrophage depletion. A role for macrophages was further supported by the finding that vaccination induced macrophage epigenetic alterations that modulated phagocytosis and the inflammatory response to infection. Together, these data show that this protein-free vaccine is a promising strategy to prevent deadly antimicrobial-resistant healthcare-associated infections,” the researchers wrote in Science Translational Medicine.

Great Need for This Protection

According to the federal Centers for Disease Control and Prevention (CDC), 1.7 million infections and 99,000 deaths are caused by HAIs annually.

“Patients who acquire infections from surgery spend, on average, an additional 6.5 days in the hospital, are five times more likely to be readmitted after discharge and twice as likely to die. Moreover, surgical patients who develop infections are 60% more likely to require admission to a hospital’s intensive care unit. Surgical infections are believed to account for up to 10 billion dollars annually in healthcare expenditures,” the CDC reports.

“All hospitalized patients are susceptible to contracting a [hospital-acquired] infection. Some patients are at greater risk than others: young children, the elderly, and persons with compromised immune systems are more likely to get an infection. Other risk factors are long hospital stays, the use of indwelling catheters, failure of healthcare workers to wash their hands, and overuse of antibiotics,” the CDC notes.

Therefore, USC’s new vaccine may be just what the doctor ordered to protect patients in hospitals and other healthcare settings from deadly HAIs.

Looking Ahead

There are currently no vaccines that are FDA-approved that treat “the most serious antibiotic resistant infections,” USC Today reported.

“Even if there were such vaccines, multiple vaccines would have to be deployed simultaneously to protect against the full slate of antibiotic-resistant microbes that cause healthcare-acquired infections,” Brian Luna, PhD, assistant professor of molecular microbiology and immunology at USC’s Keck School of Medicine, told USC Today

Thus, USC’s new vaccine could be a boon to hospital antimicrobial stewardship programs. But so far, it has only been tested on mice.

“The next step is getting guidance from the US Food and Drug Administration (FDA) on the design of a clinical trial. The first such trial would be done in healthy volunteers to find the right dose of vaccine that is safe and triggers the same kind of immune response in people as seen in the mice,” USC Today reported.

ExBaq LLC has begun talking with potential larger partners who might be willing to help develop the vaccine into clinical testing.

For years hospitals and other healthcare settings—such as long-term care facilities, urgent care clinics, and clinical laboratories—have fought an uphill battle against superbugs. So, for a vaccine to be on the horizon that can prevent life-threatening hospital-acquired infections would be a game changer.

With antimicrobial stewardships being a requirement in all hospitals, medical laboratory managers and microbiologists may celebrate this new development and its potential to be a useful tool in fighting antimicrobial resistant bacteria in their facilities.

—Kristin Althea O’Connor

Related Information:

Superbugs Including MRSA Thwarted by Unconventional Vaccine

A Protein-Free Vaccine Stimulates Innate Immunity and Protects Against Nosocomial Pathogens

Superbug Vaccine “Hulkifies” Macrophages in Mouse Model

Researchers Create Non-stick Coating That Repels External Molecules, Even Viruses and Bacteria; Clinical Laboratories May Soon Find It Easier to Keep Surfaces Free from Bacterial Contamination

Hospital-acquired infections could finally be prevented and no longer threaten the health of patients and hospital workers

In what may be the most significant development in healthcare’s fight against hospital-acquired infections (HAIs), researchers at McMaster University in Hamilton, Ontario, Canada, have developed an ultra-repellent coating that prevents anything—including viruses and bacteria—from adhering to surfaces covered in the material. This fascinating discovery may have great value for both microbiologists and hospital infection control teams, as well as the clinical laboratory and food service industries. 

The self-cleaning material has been proven to repel even the deadliest forms of antibiotic resistant (ABR) superbugs and viruses. This ultimate non-stick coating is a chemically treated form of transparent plastic wrap which can be adhered to surfaces prone to gathering germs, such as door handles, railings, and intravenous therapy (IV) stands.

“We developed the wrap to address the major threat that is posed by multi-drug resistant bacteria,” Leyla Soleymani, PhD, Associate Professor at McMaster University and one of the leaders of the study, told CNN. “Given the limited treatment options for these bugs, it is key to reduce their spread from one person to another.”

The researchers tested their revolutionary coating using two potentially deadly forms of antibiotic-resistant bacteria: Methicillin-resistant staphylococcus aureus (MRSA) and Pseudomonas.

In their study, published in ACS Nano, a journal of the American Chemical Society, titled, “Flexible Hierarchical Wraps Repel Drug-Resistant Gram-Negative and Positive Bacteria,” the researchers stated their material was effective at repelling MRSA 87% of the time and at repelling Pseudomonas 84% of the time. The wrapped surfaces also remained free of Escherichia coli (E. coli) after being exposed to the bacteria.

Bacteria-Resistant Wrap Could Greatly Diminish Threat of Hospital-Acquired Infections

This is a significant breakthrough. Dark Daily has covered the growing danger of hospital-acquired infections in numerous e-briefings, including “Could Proximity of Toilets to Sinks in Medical Intensive Care Units Contribute to Hospital-Acquired Infections?” That report covered research by the Medical College of Wisconsin (MCW) which found that sinks located near toilets in patient rooms were four times more likely to have Klebsiella pneumoniae carbapenemase (KPC)-producing organisms in their drains than sinks that were located farther away from toilets.

According to research published in the peer-reviewed Southern Medical Journal, “KPC-producing bacteria are a group of emerging highly drug-resistant Gram-negative bacilli causing infections associated with significant morbidity and mortality.”

Were those surfaces covered in this new bacterial-resistant coating, life-threatening infections in hospital ICUs could be prevented.

Taking Inspiration from Nature

In designing their new anti-microbial wrap, McMaster researchers took their inspiration from natural lotus leaves, which are effectively water-resistant and self-cleaning thanks to microscopic wrinkles that repel external molecules. Substances that come in contact with surfaces covered in the new non-stick coating—such as a water, blood, or germs—simply bounce off. They do not adhere to the material.

The “shrink-wrap” is flexible, durable, and inexpensive to manufacture. And, the researchers hope to locate a commercial partner to develop useful applications for their discovery. 

“We’re structurally tuning that plastic,” Soleymani told SciTechDaily. “This material gives us something that can be applied to all kinds of things.”

In the video above, Leyla Soleymani, PhD, Associate Professor at McMaster University, explains how “The new plastic surface—a treated form of conventional transparent wrap—can be shrink-wrapped onto door handles, railings, IV stands, and other surfaces that can be magnets for bacteria such as MRSA and C. difficile. This may be technology that has great value to clinical laboratories and microbiology laboratories. Click here to watch the video. (Image and video copyright: McMaster University/YouTube.)

Industries Outside of Healthcare Also Would Benefit

According to the US Centers for Disease Control and Prevention (CDC), at least 2.8 million people get an antibiotic-resistant infection in the US each year. More than 35,000 people die from these infections, making it one of the biggest health challenges of our time and a threat that needs to be eradicated. This innovative plastic coating could help alleviate these types of infections.

And it’s not just for healthcare. The researchers said the coating could be beneficial to the food industry as well. The plastic surface could help curtail the accidental transfer of bacteria, such as E. coli, Salmonella, and Listeria in food preparation and packaging, according to the published study.

“We can see this technology being used in all kinds of institutional and domestic settings,” Tohid Didar, PhD, Assistant Professor at McMaster University and co-author of the study, told SciTechDaily. “As the world confronts the crisis of anti-microbial resistance, we hope it will become an important part of the anti-bacterial toolbox.”

The research was led by Didar and Soleymani in collaboration with scientists from McMaster’s Institute for Infectious Disease Research (IIDR) and the McMaster-based Canadian Center for Electron Microscopy.

Clinical laboratories also are tasked with preventing the transference of dangerous bacteria to patients and lab personnel. Constant diligence in application of cleaning protocols is key. If this new anti-bacterial shrink wrap becomes widely available, medical laboratory managers and microbiologists will have a new tool to fight bacterial contamination.

—JP Schlingman

Related Information:

Researchers Create Ultimate Non-Stick Coating That Repels Everything—Even Viruses and Bacteria

Flexible Hierarchical Wraps Repel Drug-Resistant Gram-Negative and Positive Bacteria

Scientists Develop Superbug-resistant, Self-cleaning Plastic Wrap

Antibiotic Resistance Threats in the United States

Surface Allows Self-Cleaning

Repel Wraps: Ultimate Non-Stick Coating Repels Everything – Even Viruses and Bacteria

Could Proximity of Toilets to Sinks in Medical Intensive Care Units Contribute to Hospital-Acquired Infections?

Leapfrog Group Report Shows Hospitals Failing to Eliminate Hospital-Acquired Infections; Medical Laboratories Can Help Providers’ Antimicrobial Stewardship Programs

Collaboration between Pathologists, Medical Laboratories, and Hospital Staff Substantially Reduced Hospital-Acquired Infections, AHRQ Reports

Microbial Surveillance Study Snares Patients Entering Michigan Hospitals with Drug-Resistant Bacteria on Their Hands

Thorough hand-washing protocols aren’t just for healthcare professionals anymore. Patients also need to be educated to prevent hospital-acquired infections

Microbiologists and clinical laboratory managers will be particularly interested to learn that patients are bringing deadly organisms into hospitals on their hands. That’s the conclusion of a University of Michigan (UM) study which found that as patients enter and move throughout hospitals, they deposit and spread multi-drug resistant organisms, or MDROs on clinical surfaces. When those surfaces are not properly decontaminated, the bacterial contamination spreads on contact.

This finding has implications for the nosocomial infection teams in hospitals that include microbiologists and clinical laboratories. After all, every day there is a large flow of walk-in patients and visitors who come in contact with dozens of surfaces. The potential for contamination with multi-drug resistant organisms is high.

Antibiotic-resistant bacteria have been the root cause of a marked increase in hospital-acquired infections (HAIs), which Dark Daily has covered extensively. That’s why healthcare professionals practice proper hand-washing protocols to help reduce the transmission of pathogens and curtail possible infections.

The UM study, however, suggests that patients also should be educated on proper hand hygiene to diminish the potential spread of bacteria, especially before making trips to the emergency room.

The UM researchers published their study in the Oxford Academic journal Clinical Infectious Diseases.

How to Kill a Superbug

Between February and July of 2017, UM researchers at two hospitals in Southeast Michigan tested 399 general medicine hospital patients for the presence of MDROs, also known as superbugs. They swabbed the palms, fingers, and around the nails of the patients’ dominant hands and the interior of both nostrils.

The researchers found that 14% of the patients tested positive for MDROs. In addition, nearly one third of high-touch objects and surfaces in the hospital rooms tested positive for superbugs as well.  

The hospital room surfaces that were swabbed for the presence of MDROs were:

  • Bed control/bed rail;
  • Call button/television remote;
  • Bedside tray table top;
  • Telephone;
  • Toilet seat; and
  • Bathroom door knob.

The research team specifically looked for:

Due to the overuse of antibiotics, these types of bacteria are often resistant to the drugs that were once used to kill them.

“Hand hygiene narrative has largely focused on physicians, nurses, and other frontline staff, and all the policies and performance measurements have centered on them, and rightfully so,” said Lona Mody, MD (above) in a press release. Mody is Professor of Internal Medicine at UM and one of the lead researchers for the study. “But our findings make an argument for addressing transmission of MDROs in a way that involves patients, too.”

Anatomy of a Hospital-Acquired Infection

The scientists tested patients and surfaces at different stages of their hospital stays. The samples were taken on the day of admission, days three and seven of the stays, and weekly thereafter until the patients were discharged.

The team found that 6% of the patients who did not have MDROs present at the beginning of their hospital stays tested positive for superbugs at later stages of their stays. Additionally, 20% of the tested objects and surfaces in the patients’ rooms had superbugs on them at later test stages that were not present earlier in the hospital stays.

“This study highlights the importance of hand washing and environmental cleaning, especially within a healthcare setting where patients’ immune systems are compromised,” noted Katherine Reyes, MD, Department of Infectious Diseases, Henry Ford Hospital, in the press release. “This step is crucial not only for healthcare providers, but also for patients and their families. Germs are on our hands; you do not need to see to believe it. And they travel. When these germs are not washed off, they pass easily from person to person and objects to person and make people sick.”

Patients included in the study had to be new admissions, on general medicine floors, and at least 18 years of age. Criteria that excluded individuals from participation in the research included:

  • Being in observation status, typically after a medical procedure;
  • Transfers from other hospitals;
  • Transfers from intensive care units;
  • Having cystic fibrosis (these patients have a higher likelihood of MDRO colonization);
  • Receiving end-of-life care; and
  • Non-English speaking.

Patients who were transferred to a room on a nonparticipating floor within the hospitals were immediately discharged from the study. 

Patients Travel Throughout Hospitals Spreading Germs

The presence of superbugs on patients or surfaces does not automatically translate to a patient getting sick with antibiotic-resistant bacteria. Only six of the patients in this study developed MRSA. However, all six of those individuals tested positive for the superbug either on their hands or on surfaces within their room. 

The researchers noted that hospital patients typically do not stay in their rooms. They are encouraged to walk throughout the hospital to speed up the recovery process, and often are transported to other areas of hospitals for medical tests and procedures. Patients also may be picking up superbugs from other patients and staff members, other hospital areas, and commonly-touched surfaces.

The UM researchers concluded in their study that “while the burden of preventing infections has largely been borne by [healthcare personnel], our study shows that patient hands are an important reservoir and play a crucial role in the transmission of pathogens in acute care hospitals. Thus, patient hand hygiene protocols should be implemented and tested for their ability to reduce environmental contamination, pathogen transmission, and healthcare-associated infections, as well as to increase meaningful patient engagement in infection prevention.”

“Infection prevention is everybody’s business,” stated Mody in the press release. “We are all in this together. No matter where you are, in a healthcare environment or not, this study is a good reminder to clean your hands often, using good techniques—especially before and after preparing food, before eating food, after using a toilet, and before and after caring for someone who is sick—to protect yourself and others.”

These research findings should prove to be valuable for infection control teams and microbiology laboratories in the nation’s hospitals and health systems, as well as independent clinical laboratories, urgent care centers, and retail healthcare clinics.

Learning more about the transmission of infectious agents from patient to patient and from surfaces to patients could aid in the development of new techniques and strategies to prevent superbugs from manifesting in medical environments.

—JP Schlingman

Related Information:

‘Superbugs’ Found on Many Hospital Patients’ Hands and What They Touch Most Often

Multidrug-resistant Organisms in Hospitals: What Is on Patient Hands and in Their Rooms?

Unexpected Discovery of Source of Lethal, Antibiotic-Resistant Strain of E. Coli Could Lead to New Medical Laboratory Tests and Preventative Treatment

Lurking Below: NIH Study Reveals Surprising New Source of Antibiotic Resistance That Will Interest Microbiologists and Medical Laboratory Scientists

Pathologists and Clinical Laboratories to Play Critical Role in Developing New Tools to Fight Antibiotic ResistanceCould Proximity of Toilets to Sinks in Medical Intensive Care Units Contribute to Hospital-Acquired Infections?

Leapfrog Group Report Shows Hospitals Failing to Eliminate Hospital-Acquired Infections; Medical Laboratories Can Help Providers’ Antimicrobial Stewardship Programs

Contrary to CMS and Joint Commission programs implemented in 2017 to reduce them, incidents of hospital-acquired infections have risen for the past few years

Clinical laboratories and anatomic pathologists know that hospital-acquired infections (HAIs) can be deadly, not just for patients, but for their caregivers and families as well. Even one HAI is too many. Thus, the federal Centers for Medicare and Medicaid Services (CMS) required healthcare organizations to upgrade their antimicrobial stewardship (AMS) programs to meet CMS requirements and Joint Commission accreditation starting in 2017.

Nevertheless, a recent Leapfrog Group report indicates hospitals are finding it increasingly difficult to remove infections all together. This has many healthcare leaders concerned.

The report, which was analyzed by Castlight Health, states that the number of hospitals reporting zero infections has declined significantly since 2015, according to a news release. According to the Leapfrog Group’s report:

  • Two million people acquire HAIs every year;
  • 90,000 people die annually from HAIs;
  • HAI costs range from $1,000 to $50,000 depending on the infection.

Hospitals spend $28 to $45 billion annually on HAI costs, Healthcare Finance reported.

“I think it’s far too easy to let something slip, so it’s clear that there really needs to be a renewed focus on getting back to zero. We do still see some hospitals that are getting to zero, so it’s clearly possible,” Erica Mobley (above), Leapfrog Group’s Director of Operations, told Fierce Healthcare. (Photo copyright: LinkedIn.)

Regressing Instead of Progressing Toward Total HAI Elimination

Leapfrog Group’s report is based on 2017 hospital survey data submitted by 2,000 providers. The data indicates that in just two years the number of hospitals reporting zero HAIs dropped by up to 50%. The reported HAIs include:

The remaining infection measures studied by Leapfrog Group had less dramatic decreases over the same time period, according to Fierce Healthcare. Nevertheless, they are significant. They include:

  • Surgical site infections (SSI) following colon surgery: 19% zero infections compared to 23% previously;
  • Clostridium difficile (C. difficile) inpatient infections: 3% zero inpatient infections in 2017, compared to 5% in 2015.

Joint Commission Studies Antimicrobial Program Progress

Meanwhile, the Joint Commission acknowledged that implementation of antimicrobial stewardship programs by providers can be difficult. In “The Expanding Role of Antimicrobial Stewardship Programs in Hospitals in the United States: Lessons Learned from a Multisite Qualitative Study,” the accrediting organization released insights from interviews with 12 antimicrobial stewardship program leaders nationwide.

They published their study in “The Joint Commission Journal on Quality and Patient Safety.” Three themes emerged from the interviews:

  • Hospitals have revised their antimicrobial programs, which originally operated on a “top-down” structure, to programs that include clinicians from throughout entire provider organizations;
  • Health information technology (HIT) can enable real-time opportunities to launch antimicrobial therapy and treat patients; and,
  • Some barriers exist in getting resources to integrate technology and analyze data.

“These programs used expansion of personnel to amplify the antimicrobial stewardship programs’ impact and integrated IT resources into daily workflow to improve efficiency,” the researchers wrote. “Hospital antimicrobial stewardship programs can reduce inappropriate antimicrobial use, length of stay, C. difficile infection, rates of resistant infections, and cost.”

What Do CMS and Joint Commission Expect?

According to Contagion, while the Joint Commission program is part of medication management, CMS places its requirements for the antimicrobial stewardship program under “infection prevention.”

CMS requirements for an antimicrobial stewardship program include:

  • Developing antimicrobial stewardship program policies and procedures;
  • Implementing hospital-wide efforts;
  • Involving antimicrobial stakeholders for focus on antimicrobial use and bacterial resistance;
  • Setting evidence-based antimicrobial use goals; and,
  • Reducing effects of antimicrobial use in areas of C. difficile infections and antibiotic resistance.

Leapfrog Group’s data about fewer hospitals reporting zero infections offers opportunities for hospital laboratory microbiology professionals to get involved with hospital-wide antimicrobial program teams and processes and help their hospitals progress back to zero HAIs. Clinical laboratories, both hospital-based and independent, also have opportunities to contribute to improving the antimicrobial stewardship efforts of the physicians who refer them specimens.

—Donna Marie Pocius

Related Information:

Troubling New Report on Hospital Infections Comes While Centers Medicare and Medicaid Services Considers Discontinuing Publicly Reporting Rates

Leapfrog Group: Healthcare-Associated Infections

Antimicrobial Stewardship Standards: A Comparison of Centers for Medicare and Medicaid Services and Joint Commission Requirements

Joint Commission: New Antimicrobial Stewardship Standard

Core Elements of Hospital Antibiotic Stewardship Programs

Number of Hospitals Achieving Zero Infections Drops

Hospitals Losing Ground on Effectively Preventing Infections with Dramatic Drop in Those Reporting Zero Infections

The Expanding Role of Antimicrobial Stewardship Programs in Hospitals in the United States: Lessons Learned from a Multi-Site Qualitative Study

Researchers at Auburn University Collaborate with Clinical Laboratory Team at Keesler Air Force Base to Detect Antibiotic-resistant Bacteria in Just 10 Minutes

This technology could provide medical labs a quick, cost-effective way to diagnose methicillin-resistant Staphylococcus aureus

Even as in vitro diagnostics manufacturers are bringing rapid molecular tests to market that can identify infectious diseases within hours, a research collaboration involving a major university and a medical laboratory at an air force base has demonstrated the ability to identify antibiotic-resistant strains of Staphylococcus in just minutes.

This innovative research is being done by Auburn University’s College of Veterinary Medicine and clinical laboratory professionals at Keesler Air Force Base. Funding is by the U.S. Air Force. This research was of particular interest to the military because the risk for Staph infection increases when individuals are subjected to unhygienic conditions in close quarters. (more…)

;