News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

New Washington University Medicine Blood Test Can Diagnose and Track Progression of Alzheimer’s Disease with 92% Accuracy

Findings could lead to clinical laboratory test that can both track the disease’s progress and differentiate it from other forms of dementia

Another research study is underway with hopes of developing a new clinical laboratory blood test to aid in the diagnoses of Alzheimer’s disease and help physicians determine the best course of treatment.

Researchers at the Washington University School of Medicine (WashU Medicine) in St. Louis and Lund University in Sweden have developed a test that focuses on the presence of a protein called MTBR-tau243, a potential biomarker for Alzheimer’s. This protein is correlated to the toxic accumulation of tau aggregates in the brain and the severity of the disease, according to a WashU new release.

Cognitive tests and brain imaging are also used to diagnose the condition. However, existing tests cannot establish how far the illness has progressed. Alzheimer’s therapies are most effective during early stages, so determining the disease’s progression could provide insights doctors need to devise the most effective treatment protocols.

Washington University’s new blood test that identifies MTBR-tau243 protein could lead to new biomarkers as well as identifying how far the disease has progressed.

“This blood test clearly identifies Alzheimer’s tau tangles [aka, neurofibrillary tangles], which is our best biomarker measure of Alzheimer’s symptoms and dementia,” said co-senior author Randall J. Bateman, MD, professor of neurology at WashU Medicine in the WashU news release.

The researchers published their findings in the journal Nature Medicine titled, “Plasma MTBR-tau243 Biomarker Identifies Tau Tangle Pathology in Alzheimer’s Disease.”

“In clinical practice right now, we don’t have easy or accessible measures of Alzheimer’s tangles and dementia, and so a tangle blood test like this can provide a much better indication if the symptoms are due to Alzheimer’s and may also help doctors decide which treatments are best for their patients,” said co-senior author Randall J. Bateman, MD, professor of neurology at WashU Medicine in a news release. (Photo copyright: Washington University.)

Distinguishing between Alzheimer’s and Other Forms of Dementia

The WashU scientists tested the study participants in three main stages of Alzheimer’s disease:

  • Pre-symptomatic.
  • Early stage with mild cognitive impairment.
  • Late symptomatic where patients have been diagnosed with dementia.

The study included 108 volunteers from WashU Medicine’s Charles F. and Joanne Knight Alzheimer Disease Research Center and a subset of 55 people from the Swedish BioFINDER-2 study, which aims to discover key mechanisms in neurodegenerative disorders. The scientists validated their results in an independent dataset involving 739 other people in the BioFINDER-2 database. The patient information used for the study represented patients from all stages of the disease.

Alzheimer’s disease involves an accumulation of amyloid into plaques in the brain, which turn into tangles of tau proteins. When these tau tangles become detectable, cognitive symptoms begin to occur and exacerbate as the tangles spread. WashU’s new blood test can detect MTBR-tau243 levels in the brain with 92% accuracy. The researchers also found that MTBR-tau243 levels were significantly higher for patients in the mild cognitive stage of the disease and up to 200 times higher for patients in the late symptomatic stage.

“MTBR-tau243 is a chipped (off) piece of the protein in Alzheimer’s tau tangles,” Bateman told Medical News Today. “The blood test measures this piece of tau tangles in the blood as a measure of how many tangles are in the brain.”

The researchers also found that MTBR-tau243 levels were normal in patients with cognitive symptoms attributed to diseases other than Alzheimer’s, suggesting that the test can distinguish Alzheimer’s dementia from other forms of dementia.

“We’re about to enter the era of personalized medicine for Alzheimer’s disease,” said Kanta Horie, PhD, voluntary research associate professor of neurology at WashU Medicine, co-first and co-corresponding author of the study, in the WashU news release.

More Studies Needed

According to the Centers for Disease Control and Prevention (CDC), Alzheimer’s is the seventh leading causes of death in the US. It accounted for more than 120,000 deaths in 2022, the most recent year for available data. With the ebbing of COVID-19, which was ranked number four in 2022, Alzheimer’s is assumed to be higher in ranking for more recent years.

Washington University’s new blood test for Alzheimer’s may one day enable earlier detection of the disease, earlier intervention, and slowing of its advancement. However, more research and trials are needed into the theory behind this study.

“The initial study needs to be replicated in larger and more diverse populations to confirm its accuracy and reliability across different demographics, ethnicities, and stages of the disease,” Manisha Parulekar, MD, director of the Division of Geriatrics at Hackensack University Medical Center, told Medical News Today. “This includes testing individuals with other neurological conditions to ensure specificity. Clear and standardized protocols for blood collection, processing, and analysis must be established to ensure consistent and reproducible results across different laboratories and healthcare settings.”

—JP Schlingman

European Researchers Discover Gut Bacteria That Can Help Create Universal O-Type Blood

Should further study validate these findings, clinical laboratories managing hospital blood banks would be among the first to benefit from an abundance of universal donor blood

In a surprising outcome for microbiome research, scientists at the Technical University of Denmark (DTU) and Sweden’s Lund University discovered that the bacteria Akkermansia muciniphila, which resides in the human gut, produces enzymes that can be used to process whole blood in ways that could help produce type-O blood. This “universal” blood type can be given to patients during transfusions when other blood types are in short supply.

Receiving the wrong type of blood via a transfusion could result in a fatal reaction where the immune system launches an attack on foreign antigens. As blood bankers and clinical laboratory scientists know, the A antigens in type A blood are not compatible with the B antigens in type B blood. Type-O blood completely lacks these antigens, which explains why it can be used for individuals of any blood type. 

The DTU/Lund discovery—still in its initial stages of development—could eventually give blood bankers in hospital laboratories a way to expand their supply of universal type-O blood. Although individuals with type-O blood are universal donors, often the available supply is inadequate to meet the demand.

“For the first time, the new enzyme cocktails not only remove the well-described A and B antigens, but also extended variants previously not recognized as problematic for transfusion safety,” said Maher Abou Hachem, PhD, Professor of Biotechnology and Biomedicine at DTU, one of the authors of the study, in a news release.

Discovering a way that ensures any blood type can donate blood for all blood types could increase the supply of donor blood while reducing the costs and logistics affiliated with storing four separate blood types. Additionally, the production of a universal blood type using gut microorganisms could reduce the waste associated with blood products nearing their expiration dates. 

Whole blood must be used within 42 days after being collected. Having more units of the universal donor blood type would be extremely beneficial in how blood banks manage their blood supply and may revolutionize transfusions. The scientists published their findings in the journal Nature Microbiology titled, “Akkermansia Muciniphila Exoglycosidases Target Extended Blood Group Antigens to Generate ABO-Universal Blood.”

“We are close to being able to produce universal blood from group B donors, while there is still work to be done to convert the more complex group A blood,” said Maher Abou Hachem, PhD (above), Professor of Biotechnology and Biomedicine at DTU in a news release. “Our focus is now to investigate in detail if there are additional obstacles and how we can improve our enzymes to reach the ultimate goal of universal blood production,” he added. Hospital clinical laboratories that manage blood banks will be among the first to benefit from this new process once it is developed and cleared for use in patient care. (Photo copyright: Technical University of Denmark.)

Creating Universal Donor Blood

The bacterium Akkermansia muciniphila is abundant in the guts of healthy humans. It produces valuable compounds, and it is able to break down mucus in the gut and can have significant, positive effects on body weight and metabolic markers.

“What is special about the mucosa is that bacteria, which are able to live on this material, often have tailor-made enzymes to break down mucosal sugar structures, which include blood group ABO antigens. This hypothesis turned out to be correct,” Hachem noted in the DTU news release.

“Instead of doing the work ourselves and synthesizing artificial enzymes, we’ve asked the question: What looks like a red [blood] cell surface? The mucus in our gut does. So, we simply borrowed the enzymes from the bacteria that normally metabolize mucus and then applied them to the red [blood] cells,” Martin Olsson MD, PhD, professor of hematology and transfusion medicine at Lund University, told Live Science. “If you think about it, it’s quite beautiful.”

The researchers successfully identified long strings of sugar structures known as antigens that render one blood type incompatible with another. These antigens define the four blood types: A, B, AB and O. They then used a solution of gut bacteria enzymes to remove the sugar molecules present on the surface of red blood cells (RBCs).

“We biochemically evaluated 23 Akkermansia glycosyl hydrolases and identified exoglycosidase combinations which efficiently transformed both A and B antigens and four of their carbohydrate extensions,” the study authors wrote in Nature Microbiology. “Enzymatic removal of canonical and extended ABO antigens on RBCs significantly improved compatibility with group O plasmas, compared to conversion of A or B antigens alone. Finally, structural analysis of two B-converting enzymes identified a previously unknown putative carbohydrate-binding module.”

“Universal blood will create a more efficient utilization of donor blood, and also avoid giving ABO-mismatched transfusions by mistake, which can otherwise lead to potentially fatal consequences in the recipient. When we can create ABO-universal donor blood, we will simplify the logistics of transporting and administering safe blood products, while at the same time minimizing blood waste,” Olsson said in the news release.

Future Progress

The researchers have applied for a patent for the enzymes and their method of enzyme treatment. The two educational institutions hope to make further progress on this joint project over the next three years. They eventually hope to test their theory in controlled patient trials and make it available for commercial production and clinical use.

More research and clinical studies are needed to prove the effectiveness of this discovery. Clinical laboratory professionals—particularly those who manage hospital blood banks—will want to follow DTU’s research. It could someday lead to the availability of a more abundant supply of universal donor blood for transfusions.

—JP Schlingman

Related Information:

Akkermansia Muciniphila Exoglycosidases Target Extended Blood Group Antigens to Generate ABO-universal Blood

Enzymes Open New Path to Universal Donor Blood

Gut Bacteria Can Help Create Artificial Group O Blood

Lab-made Universal Blood Could Revolutionize Transfusions. Scientists Just Got One Step Closer to Making It

Universal Donor Blood Significantly Closer Thanks to Enzymes Found in Gut Bacteria

A Gut Bacteria Could Hold the Key to Universal Blood, Revolutionizing Transfusion Medicine

How Gut Enzymes Could Make Universal Donor Blood Possible

In Vitro Diagnostics Companies Race to Develop Blood-based Tests for Alzheimer’s Disease, Data Suggest a Worldwide Growing Market

As new diagnostic assays are cleared by regulators, clinical laboratories will play a key role in identifying appropriate patients for new less-invasive Alzheimer’s tests

With multiple companies racing to develop a blood-based test for Alzheimer’s disease (AD), clinical laboratories may soon have new less-invasive diagnostic assays for AD on their menus.

Why a race? Because a less-invasive clinical laboratory test that uses a venous blood draw (as opposed to a spinal tap)—and which has increased sensitivity/specificity—has a potentially large market given the substantial numbers of elderly predicted to develop Alzheimer’s over the next decade. It has the potential to be a high volume, high dollar diagnostic test.

In fact, Mordor Intelligence estimates that the market for Alzheimer’s disease therapeutics will grow from $7.7 billion in 2024 to $10.10 billion by 2029.

Alzheimers.gov, an official website of the US government, says, “Researchers have made significant progress in developing, testing, and validating biomarkers that detect signs of the disease process. For example, in addition to PET scans that detect abnormal beta-amyloid plaques and tau tangles [abnormal forms of tau protein] in the brain, NIH-supported scientists have developed the first commercial blood test for Alzheimer’s. This test and others in development can not only help support diagnosis but also be used to screen volunteers for research studies.”

Several test developers presented their research at a recent Alzheimer’s Association   International Conference. They shared data about blood-based assay accuracy in diagnosis of Alzheimer’s as compared to current practices that involve a lumbar puncture (spinal tap) to collect cerebrospinal fluid (CSF).

Additionally, the US Food and Drug Administration (FDA) is clearing new Alzheimer’s drugs for clinical use. The pharma companies behind these drugs need clinical laboratory tests that accurately diagnosis the disease and confirm that it would be appropriate for the patient to receive the new therapeutic drugs, a key element of precision medicine.

“The big promise for blood tests is that they will eventually be accessible, hopefully, cost-effective, and noninvasive,” Rebecca Edelmayer, PhD (above), Vice President, Scientific Engagement, Alzheimer’s Association, told USA Today. “The field is really moving forward with use of these types of tests,” she added. Clinical laboratories may soon have these new assays on their test menus. (Photo copyright: Alzheimer’s Association.)

Companies in the Race to Develop Blood-based Alzheimer’s Tests

One advancing test is the PrecivityAD2 from in vitro test developer C2N Diagnostics, St. Louis, Mo., which Dark Daily reported on in “C2N Diagnostics Releases PrecivityAD, the First Clinical Laboratory Blood Test for Alzheimer’s Disease.”

Researchers found that C2N’s blood test can detect brain amyloid status with “sensitivity, specificity, positive and negative predictive values that approximate those of amyloid positron emission tomography (PET) imaging,” according to a news release.

“The PrecivityAD2 blood test is intended for use in patients aged 55 and older with signs or symptoms of mild cognitive impairment or dementia who are undergoing evaluation of Alzheimer’s disease or dementia. Only a healthcare provider can order the PrecivityAD2 test,” the news release noted.

A study published in Alzheimer’s and Dementia, a journal of the Alzheimer’s Association, used “mass spectrometry-based assays to measure %p-tau217 and amyloid beta 42/40 ratio in blood samples from 583 individuals with suspected AD.”

“The PrecivityAD2 blood test showed strong clinical validity with excellent agreement with brain amyloidosis by PET,” the researchers wrote.

The PrecivityAD2 test, which is mailed directly by C2N to doctors and researchers, is performed at the company’s CLIA-certified lab, according to USA Today, which added that the cost of $1,450 is generally not covered by insurance plans.

Expanding Test Access with IVD Companies

ALZpath, Inc. has a different approach to the Alzheimer’s disease test market. The Carlsbad, Calif.-based company, set up an agreement with in vitro diagnostics (IVD) company Roche Diagnostics for use of its phosphorylated tau (pTau)217 antibody “to develop and commercialize an Alzheimer’s disease diagnostic blood test that will be offered on the Roche Elecsys platform,” according to a news release.

Roche received FDA breakthrough device designation on the Elecsys pTau217 test earlier this year and will work with pharmaceutical company Eli Lilly to commercialize the test.

Estimates show 75% of dementia cases go undetected—a number which could grow to 140 million by 2050, according to data shared by Roche with Fierce Biotech.

“We plan to leverage our installed base of diagnostic systems, which is the largest in the world, to ensure we are able to create access to this test for those who need it the most,” Matt Sause, CEO, Roche Diagnostics, told Fierce Biotech.

Another IVD company, Beckman Coulter, recently signed an agreement to use ALZpath’s pTau217 antibody test in its DxI 9000 Immunoassay Analyzer. In a news release, Kathleen Orland, SVP and General Manager of the Clinical Chemistry Immunoassay Business Unit at Beckman Coulter, said that the test had “high performance in detecting amyloid pathology” and could “integrate into our advanced DxI 9000 platform to support broad-based testing.”

Clinical Laboratory Participation

The FDA is drafting new guidance titled, “Early Alzheimer’s Disease: Developing Drugs for Treatment” that is “intended to assist sponsors in the clinical development of drugs for the treatment of the stages of sporadic Alzheimer’s disease (AD) that occur before the onset of overt dementia.” 

Pharma companies intent on launching new drugs for Alzheimer’s will need medical laboratory tests that accurately diagnosis the disease to confirm the medications would be appropriate for specific patients.

Given development of the aforementioned pTau217 antibody tests, and others featuring different diagnostic technologies, it’s likely clinical laboratories will soon be performing new assays for diagnosing Alzheimer’s disease.

—Donna Marie Pocius

Related Information:

Alzheimer’s Diagnosis and Drugs Market

How New Blood Testing Technology Could Change Alzheimer’s Treatment Forever

New Research Shows the PrecivityAD2 Blood Test Has High Accuracy Compared to Amyloid PET Scans in Individuals with Cognitive Impairment

Clinical Validation of the PrecivityAD2 Blood Test: A Mass Spectrometry-Based Test with Algorithm Combing %p-tau217 and Aβ42/40 Ratio to Identify Presence of Brain Amyloid

ALZpath Announces Licensing Agreement with Roche for Use of ALZpath’s Proprietary

Alzheimer’s Blood Test from Roche, Eli Lilly Nabs FDA Breakthrough Tag

ALZpath Signs Licensing Agreement with Beckman Coulter Diagnostics to Provide Proprietary pTau217 Antibody to Develop a Diagnostic Test for Alzheimer’s Disease

Diagnostic Accuracy of a Plasma Phosphorylated Tau 217 Immunoassay for Alzheimer Disease Pathology

Groundbreaking Alzheimer’s Blood Test Proves Highly Effective in Primary Healthcare

Blood Biomarkers to Detect Alzheimer Disease in Primary Care and Secondary Care

C2N Diagnostics Releases PrecivityAD, the First Clinical Laboratory Blood Test for Alzheimer’s Disease

New Research Suggests Clinical Laboratory Blood Tests Could Fill A Void in Alzheimer’s Disease Diagnoses

Studies presented at the Alzheimer’s Association International Conference point to the p-tau217 protein as an especially useful biomarker

Researchers disclosed a potentially useful biomarker for Alzheimer’s Disease at a major conference this summer. The good news for clinical laboratories is that the biomarker is found in blood. If further research confirms these early findings, medical laboratories could one day have a diagnostic test for this condition.

That possibility emerged from the Alzheimer’s Association International Conference (AAIC), which was held online July 27-31. Researchers presented findings from multiple studies that suggested blood/plasma levels of a protein known as phospho-tau217 (p-tau217) can indicate brain anomalies associated with Alzheimer’s.“Changes in brain proteins amyloid and tau, and their formation into clumps known as plaques and tangles, respectively, are defining physical features of Alzheimer’s disease in the brain,” states an AAIC press release. “Buildup of tau tangles is thought to correlate closely with cognitive decline. In these newly reported results, blood/plasma levels of p-tau217, one of the forms of tau found in tangles, also seem to correlate closely with buildup of amyloid.”

At present, “there is no single diagnostic test that can determine if a person has Alzheimer’s disease,” the association states on its website. Clinicians will typically review a patient’s medical history and conduct tests to evaluate memory and other everyday thinking skills. That may help determine that an individual has dementia, but not necessarily that Alzheimer’s is the cause.

“Currently, the brain changes that occur before Alzheimer’s dementia symptoms appear can only be reliably assessed by positron-emission tomography (PET) scans, and from measuring amyloid and tau proteins in [cerebrospinal] fluid (CSF),” the association states. “These methods are expensive and invasive. And, too often, they are unavailable because they are not covered by insurance or difficult to access, or both.”

In the AAIC press release, Alzheimer’s Association Chief Science Officer Maria C. Carrillo, PhD, said that a clinical laboratory blood test “would fill an urgent need for simple, inexpensive, non-invasive and easily available diagnostic tools for Alzheimer’s.

“New testing technologies could also support drug development in many ways,” she added. “For example, by helping identify the right people for clinical trials, and by tracking the impact of therapies being tested. The possibility of early detection and being able to intervene with a treatment before significant damage to the brain from Alzheimer’s disease would be game changing for individuals, families, and our healthcare system.”

However, she cautioned, “these are early results, and we do not yet know how long it will be until these tests are available for clinical use. They need to be tested in long-term, large-scale studies, such as Alzheimer’s clinical trials.”

Eli Lilly Clinical Laboratory Alzheimer’s Test

In one study presented at the conference, titled, “Discriminative Accuracy of Plasma Phospho-tau217 for Alzheimer Disease vs Other Neurodegenerative Disorders,” researchers evaluated an experimental p-tau217 medical laboratory test developed by Eli Lilly. They published their research in JAMA Network.

The study, led by Oskar Hansson, MD, of Lund University in Sweden, included 1,402 participants. About half of these were enrolled in BioFINDER-2, an ongoing dementia study in Sweden. In this group, researchers were most interested in the test’s ability to distinguish Alzheimer’s from other neurodegenerative disorders that cause dementia.

Diagnostic accuracy was between 89% and 98%, the researchers reported, which was similar to the performance of PET imaging and CSF tests. P-tau217 was more accurate than magnetic resonance imaging (MRI) as well as other biomarkers, such as p-tau181.

Oskar-Hansson-PhD-Lund-University-400w@72ppi
“Today the majority of individuals with Alzheimer’s disease around the world do not get a timely diagnosis, which results in suboptimal symptomatic treatment and care,” Oskar Hansson, MD, said in an Eli Lilly news release. “With rising prevalence of Alzheimer’s disease, more patients will be evaluated in primary care and other clinics where CSF and PET biomarkers are not available. Blood-based biomarkers, like plasma p-tau217, together with digital tools for checking memory performance, such as smartphone-based apps, can considerably improve the diagnostic work-up of Alzheimer’s disease patients in such clinics.” (Photo copyright: Alzheimer’s Fund.)

Another cohort consisted of 81 participants in the Brain and Body Donation Program at Banner Sun Health Research Institute in Sun City, Ariz. In this program, elderly volunteers submit to periodic clinical assessments and agree to donate their organs and tissue for study after they die.

Here, the researchers’ primary goal was to determine the test’s ability to distinguish between individuals with and without Alzheimer’s. Researchers ran the p-tau217 test on plasma samples collected within 2.9 years of death and compared the results to postmortem examinations of the brain tissue. Accuracy was 89% in individuals with amyloid plaques and tangles, and 98% in individuals with plaques and more extensive tangles.

The third cohort consisted of 622 members of a large extended family in Colombia whose members share a genetic mutation that makes them susceptible to early-onset Alzheimer’s, The New York Times reported. Among the members, 365 were carriers of the mutation. In this group, levels of plasma p-tau217 increased by age, and “a significant difference from noncarriers was seen at age 24.9 years,” the researchers wrote in Jama Network. That’s about 20 years before the median age when mild cognitive impairment typically begins to appear in carriers.

Other Alzheimer Biomarker Studies Presented at AAIC

Suzanne Schindler, MD, PhD, a neurologist and instructor in the Department of Neurology at the Washington University School of Medicine (WUSM) in St. Louis, presented results of an Alzheimer’s Disease (AD) study that used mass spectrometry to analyze amyloid and p-tau variants in blood samples collected from participants. The researchers compared these with CSF and PET results and found that some of the of p-tau isoforms, especially p-tau217, had a strong concordance.

“These findings indicate that blood plasma Aβ and p-tau measures are highly precise biomarkers of brain amyloidosis, tauopathy, and can identify stages of clinical and preclinical AD,” stated an AAIC press release on the studies.

The WUSM researches launched the effort to develop and validate Alzheimer’s blood biomarkers called the Study to Evaluate Amyloid in Blood and Imaging Related to Dementia (SEABIRD) in April 2019. It runs through August 2023 and will seek to enroll more than 1,100 participants in the St. Louis area.

Another study presented at the conference compared the performance of p-tau217 and p-tau181 in distinguishing between Alzheimer’s and Frontotemporal Lobar Degeneration (FTLD), another condition that causes dementia. Study author Elisabeth Thijssen, MSc, of the UC San Francisco Memory and Aging Center reported that both biomarkers could be useful in differential diagnosis, but that p-tau217 was “potentially superior” for predicting a tau positive PET scan result.

For decades, physicians have wanted a diagnostic test for Alzheimer’s Disease that could identify this condition early in its development. This would allow the patient and the family to make important decisions before the onset of severe symptoms. Such a clinical laboratory test would be ordered frequently and thus would be a new source of revenue for medical laboratories.

—Stephen Beale

Related Information:

How is Alzheimer’s Disease Diagnosed?

Alzheimer’s Diagnosis and Treatment

Diagnosing Alzheimer’s: How Alzheimer’s is Diagnosed

New Alzheimer’s Disease Blood Test Could Enable Early Diagnosis and Advance Understanding of How Disease Impacts Those Living with It

Lilly’s p-tau217 Blood Test Shows High Accuracy in Diagnosis of Alzheimer’s Disease in Data Published in JAMA

P-Tau217 May Detect Alzheimer Disease, Brain Amyloidosis, Tauopathy

New Blood Test Shows Great Promise in The Diagnosis of Alzheimer’s Disease

‘Amazing, Isn’t It?’ Long-Sought Blood Test for Alzheimer’s in Reach

Scientists Get Closer to Blood Test for Alzheimer’s Disease

Discriminative Accuracy of Plasma Phospho-tau217 for Alzheimer Disease vs Other Neurodegenerative Disorders

;