Studying gut bacteria continues to intrigue investors, but can the results produce viable diagnostic data for healthcare providers?
Even as microbiologists and clinical pathologists closely watch research into the human microbiome and anticipate study findings that could lead to new medical laboratory tests based on microbiome testing, there are entrepreneurs ready to tout the benefits of microbiome testing to consumers. That’s the impetus behind an announced deal between a microbiome testing company and a national pharmacy chain.
That deal involves health startup Viome Life Sciences, which recently closed a $86.5 million Series C funding round to support research and development of its consumer health at-home test kits, and CVS, which will sell Viome’s Gut Intelligence Test at 200 of the pharmacy company’s retail locations nationwide, according to an August press release.
“Founded seven years ago by serial entrepreneur Naveen Jain, Viome sells at-home kits that analyze the microbial composition of stool samples and provide food recommendations, as well as supplements and probiotics. Viome says it is the first company to sell gut tests at CVS, both online and in-store. The tests will sell for $179,” GeekWire reported.
Investors appear to be intrigued by these types of opportunities. To date, Viome has raised a total of $175 million.
“In a world where healthcare has often been reactive, treating symptoms and targeting diseases only after they manifest, Viome is pioneering a transformative shift by harnessing the innate power of food and nutrition,” stated Naveen Jain (above), Founder and CEO of Viome, in a press release. “Our mission is not just to prolong life but to enrich it, enabling everyone to thrive in health and vitality.” But some microbiologists and clinical laboratory scientists would consider that the current state of knowledge about the human microbiome is not well-developed enough to justify offering direct-to-consumer microbiology tests that encourage consumers to purchase nutritional products. (Photo copyright: Viome Life Sciences.)
Empowering People to Make Informed Decisions about Their Health
Established in 2016, Bellevue, Washington-based Viome produces and sells, among other tests, its Gut Intelligence at-home test kit, which analyzes the microbial composition of stool samples. This kit relies on RNA sequencing to detect bacteria and other elements present in the gut, such as yeasts and viruses.
The genetic data is then entered into an artificial intelligence (AI) algorithm to provide individuals with information regarding their personal gut health. Viome partnered with Los Alamos National Laboratory to create their AI platform. The company has collected more than 600,000 test samples to date.
“We are the only company that looks at the gene expression and what these microbes are doing,” said Naveen Jain, Founder and CEO of Viome in the press release.
Viome uses technology combined with science to determine the optimal outcomes for each individual consumer based on his or her unique human and microbial gene expression. The data derived from the microbiome is also utilized to offer nutritional recommendations and supplement advice to test takers.
“At Viome, we’re empowering our customers with an individualized nutrition strategy, cutting through the noise of temporary trends and one-size-fits-all advice,” Jain added. “We’re on a journey to redefine aging itself, and we’re invigorated by the support of our investors and customers. Together, we’re building pathways to wellness that hold the potential to enhance the lives of billions of fellow humans across the globe.”
Manipulating Microbiome through Diet
Some scientists, however, are not sold on the idea of microbiome test kits and the data they offer to healthcare providers for treating illnesses.
“The best thing anybody can do for their microbiome is to eat a healthy diet. That’s the best way of manipulating your microbiome,” David Suskind, MD, a gastroenterologist at Seattle Children’s Hospital and Professor of Pediatrics at the University of Washington, told GeekWire.
Verdu, GeekWire reported, added that “there needs to be standardization of protocols and better understanding of microbiome function in health and disease.”
“Recommendations for such commercial kits would have to be based on evidence-based guidelines, which currently do not exist,” she told GeekWire.
Nevertheless, Jain remains positive about the value of microbiome testing. “The future of medicine will be delivered at home, not at the hospital. And the medicines of the future are going to come from a farm, not a pharmacy,” he told GeekWire.
Other Viome At-home Tests
According to a paper published in the journal Therapeutic Advances in Gastroenterology titled, “Role of the Gut Microbiota in Health and Chronic Gastrointestinal Disease: Understanding a Hidden Metabolic Organ,” the human gut contains trillions of microbes, and no two people share the exact same microbiome composition. This complex community of microbial cells influences human physiology, metabolism, nutrition and immune function, and performs a critical role in overall health.
CVS currently sells Viome’s “Gut Intelligence Health Insights Plus Personalized Nutrition Plan” on its website for $149.99. Prices may vary from online to in-store. The test is intended for individuals who want to monitor and address gut imbalances or health symptoms, such as:
Constipation
Diarrhea
Stomach pain
Bloating
Heartburn
Itchy skin
Trouble maintaining a healthy weight
Viome sells the Gut Intelligence Test for $179 on its own website, as well as the following health tests:
Viome also sell precision probiotics and prebiotics, as well as supplements and oral health lozenges.
Gut microbiome testing kits, such as the one from Viome, typically require the collection of a stool sample. Healthcare consumers have in the past been reluctant to perform such testing, but as more information regarding gut health is published, that reluctance may diminish.
Clinical laboratories also have a stake in the game. Dynamic direct to consumer at-home testing has the potential to generate revenue for clinical laboratories, while helping consumers who want to monitor different aspects of their health. But this would be an adjunct to the primary mission of medical laboratories to provide testing services to local physicians and their patients.
Gene sequencing is enabling disease tracking in new ways that include retesting laboratory specimens from before the SARS-CoV-2 outbreak to determine when it arrived in the US
On February 26 of this year, nearly 200 executives and employees of neuroscience-biotechnology company Biogen gathered at the Boston Marriott Long Wharf hotel for their annual leadership conference. Unbeknownst to the attendees, by the end of the following day, dozens of them had been exposed to and become infected by SARS-CoV-2, the coronavirus that causes the COVID-19 illness.
Researchers now have hard evidence that attendees at this meeting returned to their communities and spread the infection. The findings of this study will be relevant to pathologists and clinical laboratory managers who are cooperating with health authorities in their communities to identify infected individuals and track the spread of the novel coronavirus.
This “superspreader” event has been closely investigated and has led to intriguing conclusions concerning the use of genetic sequencing to revealed vital information about the COVID-19 pandemic. Recent improvements in gene sequencing technology is giving scientists new ways to trace the spread of COVID-19 and other diseases, as well as a method for monitoring mutations and speeding research into various treatments and vaccines.
Genetic Sequencing Traces an Outbreak
“With genetic data, a record of our poor decisions is being captured in a whole new way,” Bronwyn MacInnis, PhD, Director of Pathogen Genomic Surveillance at the Broad Institute of MIT and Harvard, told The Washington Post (WaPo) during its analysis of the COVID-19 superspreading event. MacInnis is one of many Broad Institute, Harvard, MIT, and state of Massachusetts scientists who co-authored a study that detailed the coronavirus’ spread across Boston, including from the Biogen conference.
What they discovered is both surprising and enlightening. According to WaPo’s report, at least 35 new cases of the virus were linked directly to the Biogen conference, and the same strain was discovered in outbreaks in two homeless shelters in Boston, where 122 people were infected. The variant tracked by the Boston researchers was found in roughly 30% of the cases that have been sequenced in the state, as well as in Alaska, Senegal, and Luxembourg.
“The data reveal over 80 introductions into the Boston area, predominantly from elsewhere in the United States and Europe. We studied two superspreading events covered by the data, events that led to very different outcomes because of the timing and populations involved. One produced rapid spread in a vulnerable population but little onward transmission, while the other was a major contributor to sustained community transmission,” the researchers noted in their study abstract.
“The same two events differed significantly in the number of new mutations seen, raising the possibility that SARS-CoV-2 superspreading might encompass disparate transmission dynamics. Our results highlight the failure of measures to prevent importation into [Massachusetts] early in the outbreak, underscore the role of superspreading in amplifying an outbreak in a major urban area, and lay a foundation for contact tracing informed by genetic data,” they concluded.
The use of genetic sequencing to trace the virus could inform measures to control the spread in new ways, but currently, only about 0.33% of cases in the United States are being sequenced, MacInnis told WaPo, and that not sequencing samples is “throwing away the crown jewels of what you really want to know.”
Another role that genetic sequencing is playing in this pandemic is in tracking viral mutations. One of the ways that pandemics worsen is when viruses mutate to become deadlier or more easily spread. Scientists are using genetic sequencing to monitor SARS-CoV-2 for such mutations.
A group of scientists at Texas A&M University led by Yue Xing, PhD, published a paper titled, “MicroGMT: A Mutation Tracker for SARS-CoV-2 and Other Microbial Genome Sequences,” which explains that “Although most mutations are expected to be selectively neural, it is important to monitor if SARS-CoV-2 will eventually evolve to be a stronger or weaker infectious agent as time goes on. Therefore, it is vital to track mutations from newly sequenced SARS-CoV-2 genome.”
Korber’s findings are important because the mutation the scientists identified appears to have a fitness advantage. “Our data show that, over the course of one month, the variant carrying the D614G Spike mutation became the globally dominant form of SARS-CoV-2,” they wrote. Additionally, the study noted, people infected with the mutated variant appear to have a higher viral load in their upper respiratory tracts.
Genetic Sequencing, the Race for Treatments, Vaccines, and Managing Future Pandemics
If, as Fauci and Morens predict, future pandemics are likely, improvements in gene sequencing and analysis will become even more important for tracing, monitoring, and suppressing outbreaks. Clinical laboratory managers will want to watch this closely, as medical labs that process genetic sequencing will, no doubt, be part of that operation.