News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

WHO/IARC Study Projects Increase of 77% in Global Cancer Cases by 2050, Reports 20 Million Global Cancer Cases in 2022

Predicted steady increase in the number of new cancer cases globally will stress pathologist and clinical laboratories to process specimens and issue timely cancer diagnoses to referring physicians and patients

In many nations today, it is recognized that the demand for cancer testing services outstrips the capacity of anatomic pathology laboratories to perform cancer testing in a timely manner. Now a new report published in CA, a journal of the American Cancer Society, estimates that the number of new cancers globally will increase substantially during the next few decades.

With today’s cancer diagnostic technologies and standards of practice, it is anatomic pathologists who will typically receive biopsies or patient specimens, perform the tests, and confirm/report whether a patient has cancer. Thus, this new report projecting that the disease will grow 77% to 35 million cases by the year 2050 should be of interest to pathology groups and clinical laboratories worldwide.

According to the published study, titled, “Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries,” there were 20 million new cancer cases and 9.7 million cancer-related deaths in 2022.

The report is a collaboration between the World Health Organization’s International Agency for Research on Cancer (WHO/IARC) and the American Cancer Society (ACS). The report called for “global escalation of cancer control measures” and paying close attention to risk factors such as smoking, obesity, and infections, according to an IARC statement

Unfortunately, the news about increasing cancer cases comes at a time when worldwide demand for pathologists already far exceeds available supply.

“The impact of this increase will not be felt evenly across countries of different HDI [human development index] levels. Those who have the fewest resources to manage their cancer burdens will bear the brunt of the global cancer burden,” said epidemiology of cancer researcher Freddie Bray, PhD (above), Head of the Cancer Surveillance Branch at the IARC in Lyon, France, in a press release. Bray “specializes in estimating the global cancer burden and predicting future trends,” according to the organization’s website. He also “leads the Global Initiative for Cancer Registry Development (GICR), which is aimed at expanding the coverage and quality of population-based cancer registries in low- and middle-income countries.” Clinical laboratories and anatomic pathologists in the United States and abroad would be wise to keep an eye on the coming cancer burden. (Photo copyright: IARC.)

Top Diagnosed Cancers

To complete their study, the WHO/IARC researchers tapped GLOBOCAN [Global Cancer Observatory] estimates of cancer incidence and mortality, the disease’s geographical variability, and predictions based on global demographic projections.

The 10 most frequently diagnosed cancers for men and women (combined) by percent of cancer sites and number of new cases in 2022 include:            

  • Lung:                                12.4% (2.5 million cases).
  • Female breast:                  11.6% (2.3 million cases).
  • Colorectum:                       9.6% (1.9 million cases).
  • Prostate:                             7.3% (1.5 million cases).
  • Stomach:                            4.9% (968,350 cases).
  • Liver:                                 4.3% (865,269 cases).
  • Thyroid:                             4.1% (861,173 cases).
  • Cervix:                               3.3% (661,021 cases).
  • Bladder:                             3.1% (613,791 cases).
  • Non-Hodgkin lymphoma: 2.8% (553,010 cases).

For women, the cancer most often diagnosed was at the breast site. It was also the leading cause of death from cancer, the CA study noted, adding that lung and colorectal cancer cases and deaths in women followed breast cancer.

For men, lung cancer was the top cancer diagnosed in terms of cases and deaths, ahead of prostate and colorectal cancer for new cases.

Geographic HDI Affects Cancer of Citizens

The geographic areas with the highest distribution of new cancer cases and mortality rates in 2022, according to the CA paper, are:

  • Asia:          49.2% of cases, 56.1% of deaths.
  • Africa:         5.9% of cases,    7.8% of deaths.
  • Oceania:      1.4% of cases,    0.8% of deaths.
  • Euro:          22.4% of cases, 20.4% of deaths.
  • Americas:  21.2% of cases, 14.9% of deaths.

The WHO/IARC report also associated a country’s human development index (HDI)—a measure of health, longevity, and standard of living—with the likelihood of its residents developing cancer, USA Today reported.

“From a global perspective, the risk of developing cancer tends to increase with increasing HDI level. For example, the cumulative risk of men developing cancer before age of 75 years in 2022 ranged from approximately 10% in low HDI settings to over 30% in very high HDI settings,” the researchers wrote in their CA paper.

This suggests that a lack of resources to diagnose and treat cancer can hinder response and treatment.

In a news release, the WHO pointed out examples of what it termed “striking cancer inequity by HDI.”

“Women in lower HDI countries are 50% less likely to be diagnosed with breast cancer than women in high HDI countries, yet they are at much higher risk of dying of the disease due to late diagnosis and inadequate access to quality treatment,” said medical epidemiologist Isabelle Soerjomataram, MD, PhD, Deputy Head of the Cancer Surveillance Branch, WHO/IARC, in the news release.

Additionally, lung cancer-related resources were four to seven times more likely to be offered in a high-income country than a lower-income country, the WHO noted.

“WHO’s new global survey sheds light on major inequalities and lack of financial protection for cancer around the world, with populations—especially in lower income countries—unable to access the basics of cancer care,” said Bente Mikkelsen, MD, Director of the WHO’s Department of Noncommunicable Diseases, in the news release.

Current State of Pathology Demand

Is the pathology industry prepared for a global cancer burden? Hardly.

In “Examining the Worldwide Pathologist Shortage,” Dark Daily’s sister publication The Dark Report found that demand for pathology services is growing faster than the number of pathologists available to meet that demand. This is true for the United States and most other nations. Consequently, efforts are underway to more accurately measure the number of pathologists practicing in each country. Early data support the claim of an inadequate number of pathologists.

Thus, aligning clinical laboratory and anatomic pathology resources with cancer projections is especially important in light of the WHO/IARC’s recent report which suggests the number of cancer diagnoses and different types of cancer will increase dramatically in coming years. 

The data could be helpful to diagnostic leaders seeking evidence to support training of more anatomic pathologists and expansion of AP laboratories, where cancer is most often confirmed and reported.  

—Donna Marie Pocius

Related Information:

Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries

New Report on Global Cancer Burden in 2022 by World Region and Human Development Index

Global Cancer Burden Growing Amidst Mounting Need for Services

Cancer Cases Could Increase 77% as Global Population Balloons. These Types Are Most Common

Examining the Worldwide Pathologist Shortage; How Many Pathologists Are Needed in Different Countries?

Johns Hopkins Research Team Uses Machine Learning on DNA “Dark Matter” in Blood to Identify Cancer

Findings could lead to new biomarkers clinical laboratories would use for identifying cancer in patients and monitoring treatments

As DNA “dark matter” (the DNA sequences between genes) continues to be studied, researchers are learning that so-called “junk DNA” (non-functional DNA) may influence multiple health conditions and diseases including cancer. This will be of interest to pathologists and clinical laboratories engaged in cancer diagnosis and may lead to new non-invasive liquid biopsy methods for identifying cancer in blood draws.

Researchers at Johns Hopkins Kimmel Cancer Center in Baltimore, Md., developed a technique to identify changes in repeat elements of genetic code in cancerous tissue as well as in cell-free DNA (cf-DNA) that are shed in blood, according to a Johns Hopkins news release.

The Hopkins researchers described their machine learning approach—called ARTEMIS (Analysis of RepeaT EleMents in dISease)—in the journal Science Translational Medicine titled, “Genomewide Repeat Landscapes in Cancer and Cell-Free DNA.”

ARTEMIS “shows potential to predict cases of early-stage lung cancer or liver cancer in humans by detecting repetitive genetic sequences,” Genetic Engineering and Biotechnology News (GEN) reported.

This technique could enable non-invasive monitoring of cancer treatment and cancer diagnosis, Technology Networks noted.

“Our study shows that ARTEMIS can reveal genomewide repeat landscapes that reflect dramatic underlying changes in human cancers,” said study co-leader Akshaya Annapragada (above), an MD/PhD student at the Johns Hopkins University School of Medicine, in a news release. “By illuminating the so-called ‘dark genome,’ the work offers unique insights into the cancer genome and provides a proof-of-concept for the utility of genomewide repeat landscapes as tissue and blood-based biomarkers for cancer detection, characterization, and monitoring.” Clinical laboratories may soon have new biomarkers for the detection of cancer. (Photo copyright: Johns Hopkins University.)

Detecting Early Lung, Liver Cancer

Artemis is a Greek word meaning “hunting goddess.” For the Johns Hopkins researchers, ARTEMIS also describes a technique “to analyze junk DNA found in tumors” and which float in the bloodstream, Financial Times explained.

“It’s like a grand unveiling of what’s behind the curtain,” said geneticist Victor Velculescu, MD, PhD, Professor of Oncology and co-director of the Cancer Genetics and Epigenetics Program at Johns Hopkins Kimmel Cancer Center, in the news release.

“Until ARTEMIS, this dark matter of the genome was essentially ignored, but now we’re seeing that these repeats are not occurring randomly,” he added. “They end up being clustered around genes that are altered in cancer in a variety of different ways, providing the first glimpse that these sequences may be key to tumor development.”

ARTEMIS could “lead to new therapies, new diagnostics, and new screening approaches for cancer,” Velculescu noted.

Repeats of DNA Sequences Tough to Study

For some time technical limitations have hindered analysis of repetitive genomic sequences by scientists. 

“Genetic changes in repetitive sequences are a hallmark of cancer and other diseases, but characterizing these has been challenging using standard sequencing approaches,” the study authors wrote in their Science Translational Medicine paper.

“We developed a de novo k-mer (short sequences of DNA)-finding approach called ARTEMIS to identify repeat elements from whole-genome sequencing,” the researchers wrote.

The scientists put ARTEMIS to the test in laboratory experiments.

The first analysis involved 1,280 types of repeating genetic elements “in both normal and tumor tissues from 525 cancer patients” who participated in the Pan-Cancer Analysis of Whole Genomes (PCAWG), according to Technology Networks, which noted these findings:

  • A median of 807 altered elements were found in each tumor.
  • About two-thirds (820) had not “previously been found altered in human cancer.”

Second, the researchers explored “genomewide repeat element changes that were predictive of cancer,” by using machine learning to give each sample an ARTEMIS score, according to the Johns Hopkins news release. 

The scoring detected “525 PCAWG participants’ tumors from the healthy tissues with a high performance” overall Area Under the Curve (AUC) score of 0.96 (perfect score being 1.0) “across all cancer types analyzed,” the Johns Hopkins’ release states.

Liquid Biopsy Deployed

The scientists then used liquid biopsies to determine ARTEMIS’ ability to noninvasively diagnose cancer. Researchers used blood samples from:

Results, according to Johns Hopkins:

  • ARTEMIS classified patients with lung cancer with an AUC of 0.82.
  • ARTEMIS detected people with liver cancer, as compared to others with cirrhosis or viral hepatitis, with a score of AUC 0.87.

Finally, the scientists used their “ARTEMIS blood test” to find the origin of tumors in patients with cancer. They reported their technique was 78% accurate in discovering tumor tissue sources among 12 tumor types.

“These analyses reveal widespread changes in repeat landscapes of human cancers and provide an approach for their detection and characterization that could benefit early detection and disease monitoring of patients with cancer,” the researchers wrote in Science Translational Medicine.

Large Clinical Trials Planned

Velculescu said more research is planned, including larger clinical trials.

“While still at an early stage, this research demonstrates how some cancers could be diagnosed earlier by detecting tumor-specific changes in cells collected from blood samples,” Hattie Brooks, PhD, Research Information Manager, Cancer Research UK (CRUK), told Financial Times.

Should ARTEMIS prove to be a viable, non-invasive blood test for cancer, it could provide pathologists and clinical laboratories with new biomarkers and the opportunity to work with oncologists to promptly diagnosis cancer and monitor patients’ response to treatment.

—Donna Marie Pocius

Related Information:

“Junk DNA” No More: Johns Hopkins Investigators Develop Method of Identifying Cancers from Repeat Elements of Genetic Code

Genomewide Repeat Landscapes in Cancer and Cell-Free DNA

AI Detects Cancer VIA DNA Repeats in Liquid Biopsies

Genetic “Dark Matter” Could Help Monitor Cancer

AI Explores “Dark Genome” to Shed Light on Cancer Growth

;