News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Scientists Identify Growing Number of COVID-19 Variants, But Not All Clinical Laboratories Have the Capability to Test for Variants

Fear that immunity-resistant mutations of SARS-CoV-2 will emerge are real and the scientific community is paying close attention

Detection of an increasing number of new variants of the SARS-CoV-2 coronavirus raises the possibility that a new strain of COVID-19 might emerge that brings new problems to the management of the pandemic. Public health officials and clinical laboratory scientists are on the alert to determine if any new COVID-19 variant is more virulent or more easily transmissible.

Pathologists, along with the rest of the scientific community worldwide, are following reports of increasing coronavirus mutations with growing concern. The Alpha variant (Lineage B.1.1.7) accounted for most of the COVID-19 cases in April of 2021 in the US, though it was first identified in the United Kingdom. That was followed by the Iota variant (Lineage B.1.526) first identified in New York City. A series of other variants were to follow. Scientists were not surprised. It is normal for viruses to mutate, so they logged and tracked the mutations.

Then, the Delta variant (Lineage B.1.617.2) emerged during a severe outbreak in India. At first, it did not seem more threatening than any other variant, but that changed very quickly. Delta was different.

“The speed with which it dominated the pandemic has left scientists nervous about what the virus will do next. The variant battles of 2021 are part of a longer war, one that is far from over,” The Washington Post reported, which added, “Today, [Delta] has nearly wiped out all of its rivals. The coronavirus pandemic in America has become a Delta pandemic. By the end of July, it accounted for 93.4% of new infections, according to the Centers for Disease Control and Prevention.”

Why is Delta the Worst COVID-19 Variant So Far?

The Delta variant has two advantages that scientists know about:

  • Stickier spike protein than the spike on the original SARS-CoV-2 coronavirus, as well as on the other, earlier variants. This means that the Delta variant stands a better chance of remaining in a person’s nose or throat long enough to reproduce.
  • Faster replication. When a virus mutation has more opportunity to reproduce, it quickly becomes the main viral strain. This is the case with the Delta variant. Experts say that the viral load in patients with Delta is around 1,000 times higher than in patients with the original virus.
Colorized scanning electron micrograph of an apoptotic cell that is infected with the SARS-COV-2 virus

The image above is a “Colorized scanning electron micrograph of an apoptotic cell (tan) heavily infected with SARS-COV-2 virus particles (orange), isolated from a patient sample,” Newsweek reported. (Photo copyright: National Institute of Allergy and Infectious Diseases/Newsweek.)

Will More Dangerous SARS-CoV-2 Variants Appear?

“The great fear is that nature could spit out some new variant that completely saps the power of vaccines and upends the progress we’ve made against the pandemic. But to virologists and immunologists, such a possibility seems very unlikely,” STAT reported.

That is because, unlike Influenza, which is also a coronavirus, SARS-CoV-2 variants are not able to share genetic materials and recombine into deadlier variants. Thus, scientists are skeptical that a variant could appear and wipe out the progress made with vaccines and treatments.

One of the reasons the Flu vaccine changes every year is Influenza’s ability to recombine into variants that can evade immunity. Therefore, scientists are beginning to suspect that SARS-CoV-2, like the Flu, will likely be around for a while.

“I don’t think eradication is on the table. But I think we could come up with something that’s better than what we have for the flu,” Sharone Green, MD, Associate Professor of Medicine, Division of Infectious Diseases and Immunology and Infection Control Officer at University of Massachusetts Medical School, told Newsweek.

Limiting Infections and Replication

Several factors combined to create the COVID-19 pandemic. But SARS-CoV-2 was a novel coronavirus, meaning it was a new pathogen of a known virus. This meant every person on the planet was a potential host.

The situation now is different. Thanks to natural immunity, vaccines, and treatments that shorten the infection, the SARS-CoV-2 coronavirus has less chance to replicate.

“The pressure is there, but the opportunity is not. The virus has to replicate in order to mutate, but each virus doesn’t get many lottery tickets in a vaccinated person who’s infected,” Jeremy Kamil, PhD, Associate Professor of Microbiology and Immunology at LSU Health in Shreveport, La., told STAT.

Tracking Variants of Interest and Variants of Concern

The World Health Organization (WHO) has been monitoring the viral evolution of SARS-CoV-2 since the beginning of the pandemic. In late 2020, the WHO created categories for tracking variants:

The WHO’s lists of VOIs and VOCs help inform the global response to the COVID-19 pandemic.

According to the CDC’s SARS-CoV-2 Variant Classifications and Definitions:

VOIs are “A variant with specific genetic markers that have been associated with changes to receptor binding, reduced neutralization by antibodies generated against previous infection or vaccination, reduced efficacy of treatments, potential diagnostic impact, or predicted increase in transmissibility or disease severity.”

Current VOIs include:

  • Eta (Lineage B.1.525), detected in multiple countries, designated a VOI in March 2021.
  • Iota (Lineage B.1.526), US, first detected in November 2020, designated a VOI in March 2021.
  • Kappa (lineage B.1.617.1), India, first detected in October 2020, designated a VOI in April 2021.
  • Lambda (lineage C.37), Peru, first detected in December 2020, designated a VOI in June 2021.

VOCs, on the other hand, demonstrate all the characteristics of VOIs and also demonstrate “an increase in transmissibility, more severe disease (e.g., increased hospitalizations or deaths), significant reduction in neutralization by antibodies generated during previous infection or vaccination, reduced effectiveness of treatments or vaccines, or diagnostic detection failures.”

Current VOCs include:

  • Alpha (lineage B.1.1.7), first detected in the UK, September 2020.
  • Beta (lineage B.1.351), first detected in South Africa, May 2020.
  • Gamma (lineage P.1), first detected in Brazil, November 2020.
  • Delta (lineage B.1.617.2), first detected in India, October 2020.

Will Vaccines Stop Working?

With each new variant, there tends to be a flurry of media attention and fearmongering. That a variant could emerge which would render our current vaccines ineffective has the scientific community’s attention.

“There is intense interest in whether mutations in the spike glycoprotein mediate escape from host antibodies and could potentially compromise vaccine effectiveness, since spike is the major viral antigen in the current vaccines,” wrote Adam S. Lauring, MD, PhD, and Emma B. Hodcroft, PhD, in “Genetic Variants of SARS-CoV-2­—What Do They Mean?” published in the Journal of the American Medical Association (JAMA). 

“Because current vaccines provoke an immune response to the entire spike protein, it is hoped that effective protection may still occur despite a few changes at antigenic sites in SARS-CoV-2 variants,” they added.

Future events may justify the optimism that the ongoing effectiveness of vaccines will help with many COVID-19 variants. But pathologists and clinical laboratory leaders may want to be vigilant, because as infection rates increase, so do workloads and demands on critical resources in their medical laboratories.

Dava Stewart

Related Information

‘Goldilocks Virus’: Delta Vanquishes All Variant Rivals as Scientists Race to Understand Its Tricks

Viral Evolution 101: Why the Coronavirus Has Changed as It Has, and What It Means Going Forward

A Doomsday COVID Variant Worse than Delta and Lambda May Be Coming, Scientists Say

Tracking SARS-CoV-2 Variants

Genetic Variants of SARS-CoV-2—What Do They Mean?

Gene Sequencing of COVID-19 Outbreak in Minnesota School System Guides Public Health Officials in Slowing Spread of the SARS-CoV-2 Coronavirus

Data was used to create a transmission map that tracked the spread of infections among school athletes and helped public health officials determine where best to disrupt exposure

Genomic sequencing played a major role in tracking a SARS-CoV-2 outbreak in a Minnesota school system. Understanding how and where the coronavirus was spreading helped local officials implement restrictions to help keep the public safe. This episode demonstrates how clinical laboratories that can quickly sequence SARS-CoV-2 accurately and at a reasonable cost will give public health officials new tools to manage the COVID-19 pandemic.

Officials in Carver County, Minn., used the power of genomic epidemiology to map the COVID-19 outbreak, and, according to the Star Tribune, revealed how the B.1.1.7 variant of the SARS-CoV-2 coronavirus was spreading through their community.

“The resulting investigation of the Carver County outbreak produced one of the most detailed maps of COVID-19 transmission in the yearlong history of the pandemic—a chart that looks like a fireworks grand finale with infections producing cascading clusters of more infections,” the Star Tribune reported.

minnesota-dept-of-health-map-spread-of-covid-carver-county
Using genetic sequencing, the Minnesota Department of Health produced the above map of the spread of the COVID-19 through Carver County’s schools. The animated graph includes epidemiological data from “10 high school teams, 10 club teams, 12 teams in a sports association, and three fitness/rec centers.” According to the Star Tribune, “The cluster shows a high ‘attack rate’ of infected people spreading the virus to multiple close contacts. Genomic sequencing found the more infectious B.1.1.7 variant of the virus in about a quarter of cases so far.” Click here to access the interactive version of the map. To see details about specific persons and locations, tap or hover over each dot. (Graphic copyright: Minnesota Department of Health/Star Tribune.)

Private Labs, Academic Labs, Public Health Labs Must Work Together

For gene sequencing to guide policy and decision making as well as it did in Carver County, coordination, cooperation, and standardization among public, private, and academic medical laboratories is required. Additionally, each institution must report the same information in similar formats for it to be the most useful.

In “Staying Ahead of the Variants: Policy Recommendations to Identify and Manage Current and Future Variants of Concern,” the Johns Hopkins Center for Health Security (JHCHS) at the Bloomberg School of Public Health lists recommendations for how to build a coordinated sequencing program.

Priority recommendations include:

  • Maintain Policies That Slow Transmission: Variants will continue to emerge as the pandemic unfolds, but the best chance of minimizing their frequency and impact will be to continue public health measures that reduce transmission. This includes mask mandates, social distancing requirements, and limited gatherings.
  • Prioritize Contact Tracing and Case Investigation for Data Collection: Cases of variants of concern should be prioritized for contact tracing and case investigation so that public health officials can observe how the new variant behaves compared to previously circulating versions.
  • Develop a Genomic Surveillance Strategy: To guide the public health response, maximize resources, and ensure an equitable distribution of benefits, the US Department of Health and Human Services (HHS) should develop a national strategy for genomic surveillance to implement and direct a robust SARS-CoV-2 genomic surveillance program, drawing on resources and expertise from across the US government.
  • Improve Coordination for Genomic Surveillance and Characterization: There are several factors in creating a successful genomic surveillance and characterization network. Clear leadership and coordination will be necessary.”

Practical Application of Genomic Sequencing

Genomic epidemiology uses the genetic sequence of a virus to better understand how and where a given virus is spreading, as well as how it may be mutating. Pathologists understand that this information can be used at multiple levels.

Locally, as was the case in Carver County, Minn., it helps school officials decide whether to halt sports for a time. Nationally, it helps scientists identify “hot spots” and locate mutations of the coronavirus. Using this data, vaccine manufacturers can adjust their vaccines or create boosters as needed.

“This is some of the most amazing epidemiology I’ve ever seen,” epidemiologist Michael Osterholm, PhD, Regents Professor, and Director of the Center for Infectious Disease Research and Policy (CIDRAP) at the University of Minnesota, told the Star Tribune, which reported that “A public health investigation linked 140 COVID-19 cases among more than 50 locations and groups, mostly schools and sports teams in Carver County. (Photo copyright: University of Minnesota.)

Will Cost Decreases Provide Opportunities for Clinical Laboratories?

Every year since genomic sequencing became available the cost has decreased. Experts expect that trend to continue. However, as of now, the cost may still be a barrier to clinical laboratories that lack financial resources.

“Up-front costs are among the challenges that limit the use of genomic sequencing technologies,” wrote the federal Government Accountability Office (GAO) in “Gene Sequencing Can Track COVID Variants, But High Costs and Security and Privacy Concerns Present Challenges.”

“Purchasing laboratory equipment, computer resources, and staff training requires significant up-front investments. However, the cost per sequence is far less today than it was under earlier methods,” the GAO noted. This is good news for public and independent clinical laboratories. Like Carver County, a significant SARS-CoV-2 outbreak in the future may be averted thanks to genetic sequencing.

“The first piece of the cluster was spotted in a private K-8 school, which served as an incubator of sorts because its students live in different towns and play on different club teams,” the Star Tribune reported.

Finding such clusters may provide opportunities to halt the outbreak. “We can try to cut it off at the knees or maybe get ahead of it,” epidemiologist Susan Klammer with Minnesota Public Health and for childcare and schools, told the Star Tribune.

This story is a good example of how genomic sequencing and surveillance tracking—along with cooperation between public health agencies and clinical laboratories—are critical elements in slowing and eventually halting the spread of COVID-19.

Dava Stewart

Related Information:

Mapping of Carver County Outbreak Unmasks How COVID Spreads

COVID Variants Are Like “a Thief Changing Clothes” and Our Camera System Barely Exists

U.S. Ranks 43rd Worldwide in Sequencing to Check for Coronavirus Variants Like the One Found in the U.K.

Biden Administration Announces Actions to Expand COVID-19 Testing

Staying Ahead of the Variants: Policy Recommendations to Identify and Manage Current and Future Variants of Concern

Gene Sequencing Can Track COVID Variants, But High Costs and Security and Privacy Concerns Present Challenges

;