News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Proteomics May Hold Key to Understanding Aging’s Role in Chronic Diseases and Be Useful as a Clinical Laboratory Test for Age-related Diseases

Researchers are discovering it’s possible to determine a person’s age based on the amount of protein in the blood, but the technology isn’t always correct

Mass spectrometry is increasingly finding its way into clinical laboratories and with it—proteomics—the study of proteins in the human body. And like the human genome, scientists are discovering that protein plays an integral part in the aging process.

This is a most interesting research finding. Might medical laboratories someday use proteomic biomarkers to help physicians gauge the aging progression in patients? Might this diagnostic capability give pathologists and laboratory leaders a new product line for direct-to-consumer testing that would be a cash-paying, fast-growing, profitable clinical laboratory testing service? If so, proteomics could be a boon to clinical laboratories worldwide.

When research into genomics was brand-new, virtually no one imagined that someday the direct-to-consumer lab testing model would offer genetic testing to the public and create a huge stream of revenue for clinical laboratories that process genetic tests. Now, research into protein and aging might point to a similar possibility for proteomics.

For example, through proteomics, researchers led by Benoit Lehallier, PhD, Biostatistician, Instructor of Neurology and Neurological Sciences, and senior author Tony Wyss-Coray, PhD, Professor of Neurology and Neurological Sciences and co-director of the Stanford Alzheimer’s Disease Research Center at Stanford University in California, gained an understanding of aging that suggest intriguing possibilities for clinical laboratories.

In their study, published in Nature, titled, “Undulating Changes in Human Plasma Proteome Profiles Across the Lifespan,” the scientists stated that aging doesn’t happen in a consistent process over time, reported Science Alert.  

The Stanford researchers also found that they can accurately determine a person’s age based on the levels of certain proteins in his or her blood.

Additionally, the study of proteomics may finally explain why blood from young people can have a rejuvenating effect on elderly people’s brains, noted Scientific American.

Each of these findings is important on its own, but taken together, they may have interesting implications for pathologists who follow the research. And medical laboratory leaders may find opportunities in mass spectrometry in the near future, rather than decades from now.

Three Distinct Stages in Aging and Other Findings

The Stanford study found that aging appears to happen at three distinct points in a person’s life—around the ages 34, 60, and 78—rather than being a slow, steady process.

The researchers measured and compared levels of nearly 3,000 specific proteins in blood plasma taken from healthy people between the ages of 18 and 95 years. In the published study, the authors wrote, “This new approach to the study of aging led to the identification of unexpected signatures and pathways that might offer potential targets for age-related diseases.”

Along with the findings regarding the timeline for aging, the researchers found that about two-thirds of the proteins that change with age differ significantly between men and women. “This supports the idea that men and women age differently and highlights the need to include both sexes in clinical studies for a wide range of diseases,” noted a National Institutes of Health (NIH) report.

“We’ve known for a long time that measuring certain proteins in the blood can give you information about a person’s health status—lipoproteins for cardiovascular health, for example,” stated Wyss-Coray in the NIH report. “But it hasn’t been appreciated that so many different proteins’ levels—roughly a third of all the ones we looked at—change markedly with advancing age.”

Tony Wyss-Coray, PhD (above), Professor of Neurology and Neurological Sciences at Stanford University, was senior author of the proteomics study that analyzed blood plasma from 4,263 people between the ages 18-95. “Proteins are the workhorses of the body’s constituent cells, and when their relative levels undergo substantial changes, it means you’ve changed, too,” he said in a Stanford Medicine news article. “Looking at thousands of them in plasma gives you a snapshot of what’s going on throughout the body.” (Photo copyright: Stanford University.)

Differentiating Aging from Disease

Previous research studies also found it is indeed possible to measure a person’s age from his or her “proteomic signature.”

Toshiko Tanaka, PhD, Research Associate with the Longitudinal Study Section, Translational Gerontology Branch, National Institute of Aging (NIG), National Institute of Health (NIH), Baltimore, led a study into proteomics which concluded that more than 200 proteins are associated with age.

The researchers published their findings in Aging Cell, a peer-reviewed open-access journal of the Anatomical Society in the UK, titled, “Plasma Proteomic Signature of Age in Healthy Humans.” In it, the authors wrote, “Our results suggest that there are stereotypical biological changes that occur with aging that are reflected by circulating proteins.”

The fact that chronological age can be determined through a person’s proteomic signature suggests researchers could separate aging from various diseases. “Older age is the main risk factor for a myriad of chronic diseases, and it is invariably associated with progressive loss of function in multiple physiological systems,” wrote the researchers, adding, “A challenge in the field is the need to differentiate between aging and diseases.”

Can Proteins Cause Aging?

Additionally, the Stanford study found that changes in protein levels might not simply be a characteristic of aging, but may actually cause it, a Stanford Medicine news article notes.

“Changes in the levels of numerous proteins that migrate from the body’s tissues into circulating blood not only characterize, but quite possibly cause, the phenomenon of aging,” Wyss-Coray said.

Can Proteins Accurately Predict Age? Not Always

There were, however, some instances where the protein levels inaccurately predicted a person’s age. Some of the samples the Stanford researchers used were from the LonGenity research study conducted by the Albert Einstein College of Medicine, which investigated “why some people enjoy extremely long life spans, with physical health and brain function far better than expected in the 9th and 10th decades of life,” the study’s website notes.

That study included a group of exceptionally long-lived Ashkenazi Jews, who have a “genetic proclivity toward exceptionally good health in what for most of us is advanced old age,” according to the Stanford Medicine news article.

“We had data on hand-grip strength and cognitive function for that group of people. Those with stronger hand grips and better measured cognition were estimated by our plasma-protein clock to be younger than they actually were,” said Wyss-Coray. So, physical condition is a factor in proteomics’ ability to accurately prediction age.

Although understanding the connections between protein in the blood, aging, and disease is in early stages, it is clear additional research is warranted. Not too long ago the idea of consumers having their DNA sequenced from a home kit for fun seemed like fantasy.

However, after multiple FDA approvals, and the success of companies like Ancestry, 23andMe, and the clinical laboratories that serve them, the possibility that proteomics might go the same route does not seem so far-fetched.

—Dava Stewart

Related Information:

Our Bodies Age in Three Distinct Shifts, According to More than 4,000 Blood Tests

Fountain of Youth? Young Blood Infusions ‘Rejuvenate’ Old Mice

Undulating Changes in Human Plasma Proteome Profiles Across the Lifespan

Blood Protein Signatures Change Across Lifespan

Plasma Proteomic Signature of Age in Healthy Humans

Stanford Scientists Reliably Predict People’s Age by Measuring Proteins in Blood

Advancements That Could Bring Proteomics and Mass Spectrometry to Clinical Laboratories

Might Proteomics Challenge the Cult of DNA-centricity? Some Clinical Laboratory Diagnostic Developers See Opportunity in Protein-Centered Diagnostics

Advancements That Could Bring Proteomics and Mass Spectrometry to Clinical Laboratories

Experts list the top challenges facing widespread adoption of proteomics in the medical laboratory industry

Year-by-year, clinical laboratories find new ways to use mass spectrometry to analyze clinical specimens, producing results that may be more precise than test results produced by other methodologies. This is particularly true in the field of proteomics.

However, though mass spectrometry is highly accurate and fast, taking only minutes to convert a specimen into a result, it is not fully automated and requires skilled technologists to operate the instruments.

Thus, although the science of proteomics is advancing quickly, the average pathology laboratory isn’t likely to be using mass spectrometry tools any time soon. Nevertheless, medical laboratory scientists are keenly interested in adapting mass spectrometry to medical lab test technology for a growing number of assays.

Molly Campbell, Science Writer and Editor in Genomics, Proteomics, Metabolomics, and Biopharma at Technology Networks, asked proteomics experts “what, in their opinion, are the greatest challenges currently existing in proteomics, and how can we look to overcome them?” Here’s a synopsis of their answers:

Lack of High Throughput Impacts Commercialization

Proteomics isn’t as efficient as it needs to be to be adopted at the commercial level. It’s not as efficient as its cousin genomics. For it to become sufficiently efficient, manufacturers must be involved.

John Yates III, PhD, Professor, Department of Molecular Medicine at Scripps Research California campus, told Technology Networks, “One of the complaints from funding agencies is that you can sequence literally thousands of genomes very quickly, but you can’t do the same in proteomics. There’s a push to try to increase the throughput of proteomics so that we are more compatible with genomics.”

For that to happen, Yates says manufacturers need to continue advancing the technology. Much of the research is happening at universities and in the academic realm. But with commercialization comes standardization and quality control.

“It’s always exciting when you go to ASMS [the conference for the American Society for Mass Spectrometry] to see what instruments or technologies are going to be introduced by manufacturers,” Yates said.

There are signs that commercialization isn’t far off. SomaLogic, a privately-owned American protein biomarker discovery and clinical diagnostics company located in Boulder, Colo., has reached the commercialization stage for a proteomics assay platform called SomaScan. “We’ll be able to supplant, in some cases, expensive diagnostic modalities simply from a blood test,” Roy Smythe, MD, CEO of SomaLogic, told Techonomy.


The graphic above illustrates the progression mass spectrometry took during its development, starting with small proteins (left) to supramolecular complexes of intact virus particles (center) and bacteriophages (right). Because of these developments, today’s medical laboratories have more assays that utilize mass spectrometry. (Photo copyright: Technology Networks/Heck laboratory, Utrecht University, the Netherlands.)

Achieving the Necessary Technical Skillset

One of the main reasons mass spectrometry is not more widely used is that it requires technical skill that not many professionals possess. “For a long time, MS-based proteomic analyses were technically demanding at various levels, including sample processing, separation science, MS and the analysis of the spectra with respect to sequence, abundance and modification-states of peptides and proteins and false discovery rate (FDR) considerations,” Ruedi Aebersold, PhD, Professor of Systems Biology at the Institute of Molecular Systems Biology (IMSB) at ETH Zurich, told Technology Networks.

Aebersold goes on to say that he thinks this specific challenge is nearing resolution. He says that, by removing the problem created by the need for technical skill, those who study proteomics will be able to “more strongly focus on creating interesting new biological or clinical research questions and experimental design.”

Yates agrees. In a paper titled, “Recent Technical Advances in Proteomics,” published in F1000 Research, a peer-reviewed open research publishing platform for scientists, scholars, and clinicians, he wrote, “Mass spectrometry is one of the key technologies of proteomics, and over the last decade important technical advances in mass spectrometry have driven an increased capability of proteomic discovery. In addition, new methods to capture important biological information have been developed to take advantage of improving proteomic tools.”

No High-Profile Projects to Stimulate Interest

Genomics had the Human Genome Project (HGP), which sparked public interest and attracted significant funding. One of the big challenges facing proteomics is that there are no similarly big, imagination-stimulating projects. The work is important and will result in advances that will be well-received, however, the field itself is complex and difficult to explain.

Emanuel Petricoin, PhD, is a professor and co-director of the Center for Applied Proteomics and Molecular Medicine at George Mason University. He told Technology Networks, “the field itself hasn’t yet identified or grabbed onto a specific ‘moon-shot’ project. For example, there will be no equivalent to the human genome project, the proteomics field just doesn’t have that.”

He added, “The equipment needs to be in the background and what you are doing with it needs to be in the foreground, as is what happened in the genomics space. If it’s just about the machinery, then proteomics will always be a ‘poor step-child’ to genomics.”

Democratizing Proteomics

Alexander Makarov, PhD, is Director of Research in Life Sciences Mass Spectrometry (MS) at Thermo Fisher Scientific. He told Technology Networks that as mass spectrometry grew into the industry we have today, “each new development required larger and larger research and development teams to match the increasing complexity of instruments and the skyrocketing importance of software at all levels, from firmware to application. All this extends the cycle time of each innovation and also forces [researchers] to concentrate on solutions that address the most pressing needs of the scientific community.”

Makarov describes this change as “the increasing democratization of MS,” and says that it “brings with it new requirements for instruments, such as far greater robustness and ease-of-use, which need to be balanced against some aspects of performance.”

One example of the increasing democratization of MS may be several public proteomic datasets available to scientists. In European Pharmaceutical Review, Juan Antonio Viscaíno, PhD, Proteomics Team Leader at the European Bioinformatics Institute (EMBL-EBI) wrote, “These datasets are increasingly reused for multiple applications, which contribute to improving our understanding of cell biology through proteomics data.”

Sparse Data and Difficulty Measuring It

Evangelia Petsalaki, PhD, Group Leader EMBL-EBI, told Technology Networks there are two related challenges in handling proteomic data. First, the data is “very sparse” and second “[researchers] have trouble measuring low abundance proteins.”

Petsalaki notes, “every time we take a measurement, we sample different parts of the proteome or phosphoproteome and we are usually missing low abundance players that are often the most important ones, such as transcription factors.” She added that in her group they take steps to mitigate those problems.

“However, with the advances in MS technologies developed by many companies and groups around the world … and other emerging technologies that promise to allow ‘sequencing’ proteomes, analogous to genomes … I expect that these will not be issues for very long.”

So, what does all this mean for clinical laboratories? At the current pace of development, its likely assays based on proteomics could become more common in the near future. And, if throughput and commercialization ever match that of genomics, mass spectrometry and other proteomics tools could become a standard technology for pathology laboratories.

—Dava Stewart

Related Information:

5 Key Challenges in Proteomics, As Told by the Experts

The Evolution of Proteomics—Professor John Yates

The Evolution of Proteomics—Professor Ruedi Aebersold

The Evolution of Proteomics—Professor Emanuel Petricoin

The Evolution of Proteomics—Professor Alexander Makarov

The Evolution of Proteomics—Dr. Evangelia Petsalaki

For a Clear Read on Our Health, Look to Proteomics

Recent Technical Advances in Proteomics

Emerging Applications in Clinical Mass Spectrometry

HPP Human Proteome Project

Open Data Policies in Proteomics Are Starting to Revolutionize the Field

Native Mass Spectrometry: A Glimpse Into the Machinations of Biology

Researchers Produce First Map of Human Proteome, Generating Promise for Developing Novel Medical Laboratory Tests and New Therapeutics

The human proteome map provides a catalog of proteins expressed in nondiseased issues and organs to use as baseline in understanding changes that occur in disease

Given the growing importance of proteins in medical laboratory testing, pathologists will want to know about a major milestone recently achieved in this field. Researchers have announced that drafts of the complete human proteome have been released to the public.

Experts are comparing this to the first complete map of the human genome that was made public in 2000. Clinical laboratory managers and pathologists know how the availability of this information provided the foundation for rapid advances in understanding different aspects involving DNA and RNA.
(more…)

;