News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

CDC Ranks Two More Drug-Resistant Microbes as ‘Urgent Threat’ to Americans; Clinical Laboratories Are Advised to Increase Awareness of Antimicrobial Resistance

In a separate study, HHS finds a 40% increase in sepsis cases, as more patients succumb to infections without effective antibiotics and antimicrobial drugs

Given the drastic steps being taken to slow the spread of the Coronavirus in America, it’s easy to forget that significant numbers of patients die each year due to antibiotic-resistant bacteria (ARB), other forms of antimicrobial resistance (AMR), and in thousands of cases the sepsis that follows the infections.

This is why the Centers for Disease Control and Prevention (CDC) issued the report “Antibiotic Resistance Threats in the United States, 2019 (2019 AR Threats Report)” last fall. The federal agency wants to call attention the emergence of new antibiotic-resistant bacteria and fungi. In its report, the CDC lists 18 bacteria and fungi that pose either urgent, serious, or concerning threats to humans. It also placed one fungus and two bacteria on a “watch” list.

The CDC’s website states that “more than 2.8 million antibiotic-resistant infections occur in the US each year, and more than 35,000 people die as a result.” And a CDC news release states, “on average, someone in the United States gets an antibiotic-resistant infection every 11 seconds and every 15 minutes someone dies.”

Those are huge numbers.

Clinical laboratory leaders and microbiologists have learned to be vigilant as it relates to dangerously infectious antimicrobial-resistant agents that can result in severe patient harm and death. Therefore, new threats identified in the CDC’s Antibiotic Resistance Threats in the United States report will be of interest.

Drug-resistant Microbes That Pose Severe Risk

The CDC has added the fungus Candida auris (C. auris) and carbapenem-resistant Acinetobacter (a bacteria that can survive for a long time on surfaces) to its list of “urgent threats” to public health, CDC said in the news release. These drug-resistant microbes are among 18 bacteria and fungi posing a greater threat to patients’ health than CDC previously estimated, Live Science reported.

In 2013, the CDC estimated that about two million people each year acquired an antibiotic-resistant (AR) infection that killed as many as 23,000. However, in 2019, the CDC reported that those numbers were low and that the number of deaths due to AR infections in 2013 was about twice that amount. During a news conference following the CDC announcement, Michael Craig (above), a Senior Adviser for the CDC’s Antibiotic Resistance Coordination and Strategy Unit said, “We knew and said [in 2013] that our estimate was conservative … and we were right,” Live Science reported. In 2019, CDC reported 2.8 million antibiotic-resistant infections annually with more than 35,000 related deaths in the US alone. (Photo copyright: Centers for Disease Control and Prevention.)

The CDC considers five threats to be urgent. Including the latest additions, they are:

Dark Daily has regularly covered the healthcare industry’s ongoing struggle with deadly fungus and bacteria that are responsible for hospital-acquired infections (HAI) and sepsis. This latest CDC report suggests healthcare providers continue to struggle with antimicrobial-resistant agents.

Acinetobacter Threat Increases and C. auris a New Threat since 2013

Carbapenem-resistant Acinetobacter, a bacterium that causes pneumonia and bloodstream and urinary tract infections, escalated from serious to urgent in 2013. About 8,500 infections and 700 deaths were noted by the CDC in 2017. 

C. auris, however, was not addressed in the 2013 report at all. “It’s a pathogen that we didn’t even know about when we wrote our last report in 2013, and since then it’s circumvented the globe,” said Michael Craig, Senior Adviser for the CDC’s Antibiotic Resistance Coordination and Strategy Unit, during a news conference following the CDC announcement, Live Science reported.

Today, C. auris is better understood. The fungus resists emerging drugs, can result in severe infections, and can be transmitted between patients, CDC noted.

Last year, Dark Daily reported on C. auris, noting that as of May 31 the CDC had tracked 685 cases. (See, “Potentially Fatal Fungus Invades Hospitals and Public Is Not Informed,” August 26, 2019.)

By year-end, CDC tracking showed 988 cases in the US.

More Patients Getting Sepsis as Antibiotics Fail: HHS Study

In a separate study published in Critical Care Medicine, a journal of the Society of Critical Care Medicine (SCCM), the US Department of Health and Human Services  (HHS) found that antibiotic-resistant bacteria and fungi are resulting in more people acquiring sepsis, a life-threatening condition, according to an HHS news release.

Sepsis increased by 40% among hospitalized Medicare patients from 2012 through 2018, HHS reported.   

“These (untreatable infections) are happening here and now in the United States in large numbers. This is isn’t some developing world thing. This isn’t a threat for 2050. It’s a threat for here and now,” Cornelius “Neil” Clancy, MD, Associate Chief of Veterans Affairs Pittsburg Health System (VAPHS) and Opportunistic Pathogens, told STAT.

It is troubling to see data about so many patient deaths related to antibiotic-resistant infections and sepsis cases when the world is transfixed by the Coronavirus. Nevertheless, it’s important that medical laboratory leaders and microbiologists keep track of how the US healthcare system is or is not responding to these new infectious agents. And, to contact infection control and environmental services colleagues to enhance surveillance, ensure safe healthcare environments and equipment, and adopt appropriate strategies to prevent antibiotic-resistant infections.   

—Donna Marie Pocius

Related Information:

CDC:  Biggest Threats and Data: 2019 Antibiotic Resistance Threats in the United States

More People in the U.S. Dying from Antibiotic-Resistant Infections Than Previously Estimated; Significant Progress Since 2013 Could be Lost Without More Action

These Two Drug-Resistant Microbes Are New “Urgent Threats” to Americans’ Health

CDC Report: 35,000 Americans Die of Antibiotic-Resistant Infections Each Year

The Superbug Candida Auris is Giving Rise to Warnings and Big Questions

On the Emergency of Candida Auris Climate Change, Azoles, Swamps, and Birds

Largest Study of Sepsis Cases Among Medicare Beneficiaries Finds Significant Burden

Sepsis Among Medicare Beneficiaries: The Burdens of Sepsis 2012 to 2018

Dark Daily: Hospital-Acquired Infection

Potentially Fatal Fungus Invades Hospitals and Public is Not Informed

Doctors in India Sound Alarm: CRE Infections are Becoming Common in India and Killing Two-Thirds of Patients Who Contract Them While Undergoing Cancer Treatment!

As infectious bacteria become even more resistant to antibiotics, chronic disease patients with weakened immune systems are in particular danger

Microbiologists and clinical laboratory managers in the United States may find it useful to learn that exceptionally virulent strains of bacteria are causing increasing numbers of cancer patient deaths in India. Given the speed with which infectious diseases spread throughout the world, it’s not surprising that deaths due to similar hospital-acquired infections (HAIs) are increasing in the US as well.

Recent news reporting indicates that an ever-growing number of cancer patients in the world’s second most populous nation are struggling to survive these infections while undergoing chemotherapy and other treatments for their cancers.

In some ways, this situation is the result of more powerful antibiotics. Today’s modern antibiotics help physicians, pathologists, and clinical laboratories protect patients from infectious disease. However, it’s a tragic fact that those same powerful drugs are making patients with chronic diseases, such as cancer, more susceptible to death from HAIs caused by bacteria that are becoming increasingly resistant to those same antibiotics.

India is a prime example of that devastating dichotomy. Bloomberg reported that a study conducted by Abdul Ghafur, MD, an infectious disease physician with Apollo Hospitals in Chennai, India, et al, concluded that “Almost two-thirds of cancer patients with a carbapenem-resistant infection are dead within four weeks, vs. a 28-day mortality rate of 38% in patients whose infections are curable.”

This news should serve as an alert to pathologists, microbiologists, and clinical laboratory leaders in the US as these same superbugs—which resist not only antibiotics but other drugs as well—may become more prevalent in this country.

 ‘We Don’t Know What to Do’

The dire challenge facing India’s cancer patients is due to escalating bloodstream infections associated with carbapenem-resistant enterobacteriaceae (CRE), a particularly deadly bacteria that has become resistant to even the most potent carbapenem antibiotics, generally considered drugs of last resort for dealing with life-threatening infections.

Lately, the problem has only escalated. “We are facing a difficult scenario—to give chemotherapy and cure the cancer and get a drug-resistant infection and the patient dying of infections.” Ghafur told Bloomberg. “We don’t know what to do. The world doesn’t know what to do in this scenario.”

Ghafur added, “However wonderful the developments in the field of oncology, they are not going to be useful, because we know cancer patients die of infections.”

Abdul Ghafur, MD (above), an infectious disease physician with Apollo Hospitals in Chennai, India, told The Better India that, “Indians, are obsessed with antibiotics and believe that they can cure almost all infections, including viral infections! Moreover, at least half of the prescriptions by Indian doctors include an antibiotic. Sadly, the public believes that whenever we get cold and cough, we need to swallow antibiotics for three days along with paracetamol [acetaminophen]! This is a myth that urgently needs to disappear!” (Photo copyright: Longitude Prize.)

The problem in India, Bloomberg reports, is exacerbated by contaminated food and water. “Germs acquired through ingesting contaminated food and water become part of the normal gut microbiome, but they can turn deadly if they escape the bowel and infect the urinary tract, blood, and other tissues.” And chemotherapy patients, who likely have weakened digestive tracts, suffer most when the deadly germs reach the urinary tract, blood, and surrounding tissues.

“Ten years ago, carbapenem-resistant superbug infections were rare. Now, infections such as carbapenem-resistant klebsiella bloodstream infection, urinary infection, pneumonia, and surgical site infections are a day-to-day problem in our (Indian) hospitals. Even healthy adults in the community may carry these bacteria in their gut in Indian metropolitan cities; up to 5% of people carry these superbugs in their intestines,” Ghafur told The Better India.

What are CRE and Why Are They So Deadly?

CRE are part of the enterobacteriaceae bacterial family, which also includes Escherichia coli (E. coli) and Klebsiella pneumoniae. CRE, according to the Centers for Disease Control and Prevention (CDC), are considered “antibiotic-resistant” because antibiotic agents known as carbapenems are becoming increasing less effective at treating enterobacteriaceae.

In fact, a 2018 study conducted by the All India Institute of Medical Sciences (AIIMS) in New Delhi, which was published in the Journal of Global Infectious Diseases (JGID), found that bloodstream infections due to CRE were the “leading cause” of illness and death in patients with hematological malignancies, such as leukemia.

“These patients receive chemotherapy during treatment, which lead to severe mucositis of gastrointestinal tract and myelosuppression. It was hypothesized that the gut colonizer translocate into blood circulation causing [bloodstream infection],” the AIIMS paper states.

US Cases of C. auris Also Linked to CRE

Deaths in the US involving the fungus Candida auris (C. auris) have been linked to CRE as well. And, people who were hospitalized outside the US may be at particular risk.

The CDC reported on a Maryland resident who was hospitalized in Kenya with a carbapenemase-producing infection, which was later diagnosed as C. auris. The CDC describes C. auris as “an emerging drug-resistant yeast of high public concern … C auris frequently co-occurs with carbapenemase-producing organisms like CRE.”

The graphic above, developed by the NYT from CDC data, shows that Candida auris is found globally and not restricted to poor or resource-strapped nations. “The fungus seems to have emerged in several locations at once, not from a single source,” the NYT reports. This means clinical laboratories can expect to be processing more tests to identify the deadly fungus. (Graphic copyright: New York Times/CDC.)

Drug-resistant germs are a public health threat that has grown beyond overuse of antibiotics to an “explosion of resistant fungi,” reported the New York Times (NYT).

“It’s an enormous problem. We depend on being able to treat those patients with antifungals,” Matthew Fisher, PhD, Professor of Fungal Disease Epidemiology at Imperial College London, told the NYT

The NYT article states that “Nearly half of patients who contract C. auris die within 90 days, according to the CDC. Yet the world’s experts have not nailed down where it came from in the first place.”

Cases of C. auris in the US are showing up in New York, New Jersey, and Illinois and is arriving on travelers from many countries, including India, Pakistan, South Africa, Spain, United Kingdom, and Venezuela.  

“It is a creature from the black lagoon,” Tom Chiller, MD, Chief of the Mycotic Diseases Branch at the CDC told the NYT. “It bubbled up and now it is everywhere.”

Since antibiotics are used heavily in agriculture and farming worldwide, the numbers of antibiotic-resistant infections will likely increase. Things may get worse, before they get better.

Pathologists, microbiologists, oncologists, and clinical laboratories involved in caring for patients with antibiotic-resistant infections will want to fully understand the dangers involved, not just to patients, but to healthcare workers as well.

—Donna Marie Pocius

Related Information:

Superbugs Deadlier than Cancer Put Chemotherapy into Question

Taking Antibiotics for a Viral Infection? A Doc Shares Why You Should Think Twice

Healthcare-Associated Infections: CRE

Rectal Carriage of Carbapenem-resistant enterobacteriaceae: A Menace to Highly Vulnerable Patients

Clinical Study of Carbapenem Sensitive and Resistant Gram-negative Bacteria in Neutropenic and Nonneutropenic Patients: The First Series from India

Candida Auris in a U.S. Patient with Carbapenemase-Producing Organisms and Recent Hospitalization in Kenya

Deadly Germs, Lost Cures: A Mysterious Infection, Spanning the Globe in a Climate of Secrecy

University of Edinburgh Study Finds Antimicrobial Bacteria in Hospital Wastewater in Research That Has Implications for Microbiologists

Pathologists and Clinical Laboratories to Play Critical Role in Developing New Tools to Fight Antibiotic Resistance

Lurking Below: NIH Study Reveals Surprising New Source of Antibiotic Resistance That Will Interest Microbiologists and Medical Laboratory Scientists

Wellcome Sanger Institute Study Discovers New Strain of C. Difficile That Targets Sugar in Hospital Foods and Resists Standard Disinfectants

Researchers believe new findings about genetic changes in C. difficile are a sign that it is becoming more difficult to eradicate

Hospital infection control teams, microbiologists, and clinical laboratory professionals soon may be battling a strain of Clostridium difficile (C. difficile) that is even more resistant to disinfectants and other forms of infection control.

That’s the opinion of research scientists at the Wellcome Sanger Institute (WSI) and the London School of Hygiene and Tropical Medicine (LSHTM) in the United Kingdom who discovered the “genetic changes” in C. difficile. Their genomics study, published in Nature Genetics, shows that the battle against super-bugs could be heating up.

A WSI news release states the researchers “identified genetic changes in the newly-emerging species that allow it to thrive on the Western sugar-rich diet, evade common hospital disinfectants, and spread easily.”

Microbiologists and infectious disease doctors know full well that this means the battle to control HAIs is far from won.

C. difficile is currently forming a new species with one group specialized to spread in hospital environments. This emerging species has existed for thousands of years, but this is the first time anyone has studied C. difficile genomics in this way to identify it. This particular [bacterium] was primed to take advantage of modern healthcare practices and human diets,” said Nitin Kumar, PhD (above), in the news release. (Photo copyright: Wellcome Sanger Institute.) 

Genomic Study Finds New Species of Bacteria Thrive in Western Hospitals

In the published paper, Nitin Kumar, PhD, Senior Bioinformatician at the Wellcome Sanger Institute and Joint First Author of the study, described a need to better understand the formation of the new bacterial species. To do so, the researchers first collected and cultured 906 strains of C. difficile from humans, animals, and the environment. Next, they sequenced each DNA strain. Then, they compared and analyzed all genomes.

The researchers found that “about 70% of the strain collected specifically from hospital patients shared many notable characteristics,” the New York Post (NYPost) reported.

Hospital medical laboratory leaders will be intrigued by the researchers’ conclusion that C. difficile is dividing into two separate species. The new type—dubbed C. difficile clade A—seems to be targeting sugar-laden foods common in Western diets and easily spreads in hospital environments, the study notes. 

“It’s not uncommon for bacteria to evolve, but this time we actually see what factors are responsible for the evolution,” Kumar told Live Science.

New C. Difficile Loves Sugar, Spreads

Researchers found changes in the DNA and ability of the C. difficile clade A to metabolize simple sugars. Common hospital fare, such as “the pudding cups and instant mashed potatoes that define hospital dining are prime targets for these strains”, the NYPost explained.

Indeed, C. difficile clade A does have a sweet tooth. It was associated with infection in mice that were put on a sugary “Western” diet, according to the Daily Mail, which reported the researchers found that “tougher” spores enabled the bacteria to fight disinfectants and were, therefore, likely to spread in healthcare environments and among patients.

“The new C. difficile produces spores that are more resistant and have increased sporulation and host colonization capacity when glucose or fructose is available for metabolism. Thus, we report the formation of an emerging C. difficile species, selected for metabolizing simple dietary sugars and producing high levels or resistant spores, that is adapted for healthcare-mediated transmission,” the researchers wrote in Nature Genetics.

Bacteria Pose Risk to Patients

The findings about the new strains of C. difficile bacteria now taking hold in provider settings are important because hospitalized patients are among those likely to develop life-threatening diarrhea due to infection. In particular, people being treated with antibiotics are vulnerable to hospital-acquired infections, because the drugs eliminate normal gut bacteria that control the spread of C. difficile bacteria, the researchers explained.

According to the Centers for Disease Control and Prevention (CDC), C. difficile causes about a half-million infections in patients annually and 15,000 of those infections lead to deaths in the US each year.

New Hospital Foods and Disinfectants Needed

The WSI/LSHTM study suggests hospital representatives should serve low-sugar diets to patients and purchase stronger disinfectants. 

“We show that strains of C. difficile bacteria have continued to evolve in response to modern diets and healthcare systems and reveal that focusing on diet and looking for new disinfectants could help in the fight against this bacteria,” said Trevor Lawley, PhD, Senior Author and Group Leader of the Lawley Lab at the Wellcome Sanger Institute, in the news release.

Microbiologists, infectious disease physicians, and their associates in nutrition and environmental services can help by understanding and watching development of the new C. difficile species and offering possible therapies and approaches toward prevention.

Meanwhile, clinical laboratories and microbiology labs will want to keep up with research into these new forms of C. difficile, so that they can identify the strains of this bacteria that are more resistant to disinfectants and other infection control methods.  

—Donna Marie Pocius

Related Information:

Adaptation of Host Transmission Cycle During Clostridium Difficile Speciation

Diarrhea-causing Bacteria Adapted to Spread in Hospitals

Sugary Western Diets Fuel Newly Evolving Superbug

New Carb-Loving Superbug is Primed to Target Hospital Food

Superbug C Difficile Evolving to Spread in Hospitals and Feeds on the Sugar-Rich Western Diet

CDC: Healthcare-Associated Infections-C. Difficile  

Potentially Fatal Fungus Invades Hospitals and Public Is Not Informed

Clinical laboratories and microbiologists will want to be on the alert for this deadly infectious agent that has killed patients through blood infections

Healthcare continues to struggle with the issue of how much to disclose to the public when new and deadly infectious agents are identified in a limited number of patients. Timely disclosure of new pathogens is a matter of great concern to clinical laboratory scientists, microbiologists, and clinical pathologists because their laboratories get specimens from infected patients and they must correctly identify rare or emerging pathogens to help minimize the spread of disease.

This is why many medical laboratory professionals were surprised to see national news headlines recently about a particularly deadly new form of a pathogen. The Centers for Disease Control and Prevention (CDC) has been dealing with one particularly nasty example of Candida auris, or C. auris. This “superbug” fungus has been appearing in hospitals and healthcare clinics across the globe and it has killed people.

The news coverage of C. auris focused on two elements:

  • First, how the pathogen was recognized by such healthcare agencies as the CDC.
  • Second, why CDC and others did not issue a public alert to hospitals, physicians, and other caregivers once it was known that C. auris was responsible for the death of several patients.

Once C. auris takes hold, it can enter a patient’s bloodstream or wounds and cause life- threatening complications like sepsis. When hospitals rooms are not properly decontaminated, life-threatening hospital-acquired infections (HAIs), also known as nosocomial infections, can occur.

Incidences of HAIs have been on the rise in the past few years. Dark Daily has reported on this disturbing trend many times.

The New York Times (NYT) reported on one such HAI that had tragic consequences. A patient admitted to Mount Sinai Hospital in New York for abdominal surgery was later discovered to have contracted C. auris. He was immediately isolated and spent 90 days in the hospital before passing away. Tests showed that Candida auris was everywhere in his room.

“Everything was positive—the walls, the bed, the doors, the curtains, the phones, the sink, the whiteboard, the poles, the pump,” Scott Lorin, MD, President and Chief Operating Officer at Mount Sinai Brooklyn Hospital, told the NYT. “The mattress, the bed rails, the canister holes, the window shades, the ceiling, everything in the room was positive,” he said.

The hospital had to use special cleaning equipment to sterilize the room and even found it necessary to tear out some ceiling and floor tiles to annihilate the fungus, the NYT reported.

Media News Coverage of ‘Culture of Secrecy’ 

When this deadly fungus first emerged in America, it was not disclosed to the public for a lengthy period of time. Then, when details of deaths in hospitals due to the superbug went public, the national news media reacted but then went silent. Why?

The New York Times (NYT) covered the debate over public disclosure of outbreaks involving drug-resistant infections at healthcare facilities in “Culture of Secrecy Shields Hospitals with Outbreaks of Drug-Resistant Infections.”

In that article, the NYT states that “under its agreement with states, the CDC is barred from publicly identifying hospitals that are battling to contain the spread of dangerous pathogens.” So, the CDC is prevented from revealing to the public the names and locations of facilities that are dealing with C. auris. And state governments typically do not share that information either. 

The NYT article also states, “The CDC declined to comment, but in the past officials have said their approach to confidentiality is necessary to encourage the cooperation of hospitals and nursing homes, which might otherwise seek to conceal infectious outbreaks.”

And that, “Those pushing for increased transparency say they are up against powerful medical institutions eager to protect their reputations, as well as state health officials who also shield hospitals from public scrutiny.”

“Who’s speaking up for the baby that got the flu from the hospital worker or for the patient who got MRSA from a bedrail? The idea isn’t to embarrass or humiliate anyone, but if we don’t draw more attention to infectious disease outbreaks, nothing is going to change,” Arthur Caplan, PhD (above), told the NYT. Caplan is Drs. William F and Virginia Connolly Mitty Professor and founding head of the Division of Medical Ethics at NYU School of Medicine in New York City. (Photo copyright: NYU Langone Health.)

Common Yeast Infection or Killer Superbug? Both!

C. auris grows as a common yeast infection. However, it can be life threatening if it enters the bloodstream.

“The average person calls Candida infections yeast infections,” William Schaffner, MD, Professor and Chair, Department of Preventative Medicine at Vanderbilt University Medical Center, told Prevention. “However, Candida auris infections are much more serious than your standard yeast infection. They’re a variety of so-called superbugs [that] can complicate the therapy of very sick people.”

The CDC reports that, as of May 31, 2019, there have been a total of 685 cases of C. auris reported in the US. The majority of those cases occurred in Illinois (180), New Jersey (124), and New York (336). Twenty more cases were reported in Florida, and eight other states—California, Connecticut, Indiana, Maryland, Massachusetts, Oklahoma, Texas, and Virginia—each had less than 10 confirmed cases of C. auris.

The CDC states the infection seems to be most prominent among populations that have had extended stays in hospitals or nursing facilities. Patients who have had lines or tubes such as breathing tubes, feeding tubes, or central venous catheters entering their body, and those who have recently been given antibiotics or antifungal medications, seem to be the most vulnerable to contracting C. auris.

The fungus typically attacks people who are already sick or have weakened immune systems, which can make it challenging to diagnose, the CDC notes. C. auris infections are typically diagnosed with special clinical laboratory testing of blood specimens or other body fluids. Infections have been found in patients of all ages, from infants to the elderly.

Data from the CDC indicates that C. auris can cause bloodstream infections, wound infections, and ear infections. Common symptoms that indicate a person has Candida auris include fever, chills, weakness, low blood pressure, and general malaise that do not improve with antibiotics.

“A patient’s temperature may go up, their blood pressure can go down, and they have complications of a pre-existing illness because of Candida auris,” Schaffner told Prevention.

The CDC reports that more than one in three patients with invasive C. auris dies. Even though the mortality rates for Candida auris are high, it is unclear whether patients are dying from the infection or from their underlying illnesses. “Whatever the cause, having Candida auris doesn’t help a patient in any way,” Schaffner noted.

The CDC states that it and its public health partners are working hard to discover more about this fungus, and to devise ways to protect people from contracting it. Average healthy people probably don’t need to worry about becoming infected with Candida auris. However, individuals who are at high risk, and healthcare professionals, microbiologists, and pathologists, should be on the alert for this new superbug strain of fungus. 

—JP Schlingman

Related Information:

A Mysterious Infection, Spanning the Globe in a Climate of Secrecy

Culture of Secrecy Shields Hospitals with Outbreaks of Drug-Resistant Infections

Candida auris: A Drug-Resistant Germ That Spreads in Healthcare Facilities

A Deadly Superbug Fungus Called Candida auris Has Been Detected in 12 States—Here’s What You Need to Know

A Deadly Fungal Infection Called Candida auris Is Spreading across the Globe, and No One Knows How to Stop It

Study: Colonized Candida auris Patients Shed Fungus via Skin

The Deadly Yeast Infection You Must Know About

What You Need to Know Candida auris, a Dangerous Fungal Infection That’s on the Rise

With Candida auris, a Lack of Transparency Could Make Things Worse

Could Proximity of Toilets to Sinks in Medical Intensive Care Units Contribute to Hospital-Acquired Infections?

Stanford University Study Traces Hospital-Acquired Bloodstream Infections to Patients’ Own Digestive Tract

New bioinformatic tool finds gut microbiota may be ‘potential reservoir of bloodstream pathogens’ suggesting patients’ own bodies can be source of infections

Clinical laboratories in hospitals and health networks throughout the nation are collaborating in the priority effort to reduce deaths from sepsis and related blood infections. Now comes news that researchers at Stanford have identified an unexpected source of bloodstream infections. This finding may help medical laboratories contribute to faster and more accurate diagnoses of blood infections, particularly for hospital inpatients.

Lax infection-control practices often are blamed for hospital-acquired infections (HAIs). And HAIs certainly have been responsible for many tragic avoidable deaths. However, new research from Stanford University School of Medicine shows that hospital staff, other patients, or unclean instruments may not be solely responsible for all infections that present during hospital stays. According to Stanford researchers, a patient’s own digestive tract can be the surprising culprit for many bloodstream infections. This finding confirms a common belief that the patient’s microbiome probably is involved in many blood infections.

Clinical pathologists have become vital players in infection prevention programs, as hospitals intensify their focus on reducing HAIs. That’s especially in light of the Centers for Medicare and Medicaid Services (CMS) implementation of the pay-for-performance Hospital-Acquired Condition (HAC) Reduction Program. Now, Stanford researchers have found that for many hospital patients their own bodies may be the source of infections.

The researchers published their findings in Nature Medicine.

Bacteria Causing Blood Infections Found in Patients’ Stool Samples After Bone Marrow Transplants

Using a new bioinformatic computational tool called StrainSifter, the Stanford University team rapidly and accurately identified a surprising infection source in a group of hospitalized patients—microbes already living in the patients’ large intestines—a Stanford University news release explained.

The researchers analyzed blood and stool samples from 30 patients who developed bloodstream infections after receiving bone marrow transplants between October 2015 and June 2017 at Stanford Hospital. The researchers sought to determine whether the bacteria isolated from the patients’ blood also was found in stool specimens that had been collected prior to the transplants. The process required sequencing not only the patients’ DNA, but also analyzing the genomes of all the individual microbial strains resident in each patient’s stool.

“Just finding E. coli in a patient’s blood and again in the patient’s stool doesn’t mean they’re the same strain,” Ami Bhatt, MD, PhD, Assistant Professor of Hematology and Genetics at Stanford, explained in the news release. Bhatt served as senior author of the study. (Photo copyright: Stanford University.)

Analysis found that more than one-third of the patients’ stool samples (11) contained detectable levels of the same bacterial strain that had caused those patients’ bloodstream infections.

“Because the gut normally harbors more than 1,000 different bacterial strains, it’s looked upon as a likely culprit of bloodstream infections, especially when the identified pathogen is one known to thrive inside the gut,” Ami Bhatt, MD, PhD, Assistant Professor of Hematology and Genetics at Stanford, said in the news release. “But while this culpability has been assumed—and it’s an entirely reasonable assumption—it’s never been proven. Our study demonstrates that it’s true.”

Clinical and DNA data confirmed the gastrointestinal presence of Escherichia coli and Klebsiella pneumonia, common causes of pneumonia, urinary tract infections, and other potentially serious conditions. In addition, they found other disease-causing pathogens in the gut that they would not have expected to be there.

“We also find cases where typically nonenteric [outside the intestine] pathogens, such as Pseudomonas aeruginosa and Staphylococcus epidermidis, are found in the gut microbiota, thereby challenging the existing informal dogma of these infections originating from environmental or skin sources,” Fiona Tamburini, a senior graduate student, and postdoctoral scholar Tessa Andermann, MD, MPH, Infectious Disease Medical Fellow, wrote in Nature Medicine.

New Tool for Precision Medicine

Bhatt believes being able to trace the source of bloodstream infections will help doctors provide more targeted treatments for HAIs and potentially lead to effective prevention methods. This will create a new opportunity for microbiology laboratories to provide the necessary diagnostic tests designed to guide therapeutic choices of attending physicians.

“Until now, we couldn’t pinpoint those sources with high confidence,” Bhatt said in the news release. “That’s a problem because when a patient has a bloodstream infection, it’s not enough simply to administer broad-spectrum antibiotics. You need to treat the source, or the infection will come back.”

Bhatt says the computational tool has the potential to allow medical practitioners to quickly identify whether a pathogen responsible for a patient’s bloodstream infection came from a break in the skin, leaked through the intestinal wall into the blood, or was passed on through an inserted catheter or other object.

Bhatt’s team focused on the intestines for their study because it’s the home of 1,000 to 2,000 different germs. Dark Daily has reported often on developments involving human gut bacteria (AKA, microbiome) in e-briefings going back to 2013. While these gut bacteria do not typically cause problems, Bhatt said, “It’s only when they show up in the wrong place—due, for example, to leaking through a disrupted intestinal barrier into the bloodstream—that they cause trouble.”

Because nearly 40% of immunocompromised patients who spend up to six weeks in a hospital develop bloodstream infections, the Stanford findings could signal a major breakthrough in preventing HAIs. However, larger studies are needed to validate the researchers’ contention that the gut is a “potential reservoir of bloodstreams pathogens.”

If true, microbiologists and clinical pathologists may in the future have a new method for helping hospitals identify, track, and treat blood-born infections as well as and preventing HAIs.

—Andrea Downing Peck

Related Information: 

Study Traces Hospital-Acquired Bloodstream Infections to Patients’ Own Bodies

Hospital-Acquired Condition Reduction Program Fiscal Year 2019 Fact Sheet

Precision Identification of Diverse Bloodstream Pathogens in the Gut Microbiome

Multiple Dark Daily E-briefings on Human Gut Bacteria (Microbiome)

;