News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Proteomics-based Clinical Laboratory Testing May Get a Major Boost as Google’s DeepMind Research Lab Is Making Public Its Entire AI Database of Human Protein Predictions

DeepMind hopes its unrivaled collection of data, enabled by artificial intelligence, may advance development of precision medicines, new medical laboratory tests, and therapeutic treatments

‘Tis the season for giving, and one United Kingdom-based artificial intelligence (AI) research laboratory is making a sizeable gift. After using AI and machine learning to create “the most comprehensive map of human proteins,” in existence, DeepMind, a subsidiary of Alphabet Inc. (NASDAQ:GOOGL), parent company of Google, plans to give away for free its database of millions of protein structure predictions to the global scientific community and to all of humanity, The Verge reported.

Pathologists and clinical laboratory scientists developing proteomic assays understand the significance of this gesture. They know how difficult and expensive it is to determine protein structures using sequencing of amino acids. That’s because the various types of amino acids in use cause the [DNA] string to “fold.” Thus, the availability of this data may accelerate the development of more diagnostic tests based on proteomics.

“For decades, scientists have been trying to find a method to reliably determine a protein’s structure just from its sequence of amino acids. Attraction and repulsion between the 20 different types of amino acids cause the string to fold in a feat of ‘spontaneous origami,’ forming the intricate curls, loops, and pleats of a protein’s 3D structure. This grand scientific challenge is known as the protein-folding problem,” a DeepMind statement noted.

Enter DeepMind’s AlphaFold AI platform to help iron things out. “Experimental techniques for determining structures are painstakingly laborious and time consuming (sometimes taking years and millions of dollars). Our latest version [of AlphaFold] can now predict the shape of a protein, at scale and in minutes, down to atomic accuracy. This is a significant breakthrough and highlights the impact AI can have on science,” DeepMind stated.

Release of Data Will Be ‘Transformative’

In July, DeepMind announced it would begin releasing data from its AlphaFold Protein Structure Database which contains “predictions for the structure of some 350,000 proteins across 20 different organisms,” The Verge reported, adding, “Most significantly, the release includes predictions for 98% of all human proteins, around 20,000 different structures, which are collectively known as the human proteome. By the end of the year, DeepMind hopes to release predictions for 100 million protein structures.”

According to Edith Heard, PhD, Director General of the European Molecular Biology Laboratory (EMBL), the open release of such a dataset will be “transformative for our understanding of how life works,” The Verge reported.  

Demis Hassabis

“I see this as the culmination of the entire 10-year-plus lifetime of DeepMind,” company CEO and co-founder Demis Hassabis (above), told The Verge. “From the beginning, this is what we set out to do: to make breakthroughs in AI, test that on games like Go and Atari, [and] apply that to real-world problems, to see if we can accelerate scientific breakthroughs and use those to benefit humanity.” The release of DeepMind’s entire protein prediction database will certainly do that. Clinical laboratory scientists worldwide will have free access to use it in developing new precision medicine treatments based on proteomics. (Photo copyright: BBC.)

Free Data about Proteins Will Accelerate Research on Diseases, Treatments

Research into how protein folds and, thereby, functions could have implications to fighting diseases and developing new medicines, according to DeepMind. 

“This will be one of the most important datasets since the mapping of the human genome,” said Ewan Birney, PhD, Deputy Director General of the EMBL, in the DeepMind statement. EMBL worked with DeepMind on the dataset.

DeepMind protein prediction data are already being used by scientists in medical research. “Anyone can use it for anything. They just need to credit the people involved in the citation,” said Demis Hassabis, DeepMind CEO and Co-founder, in The Verge.

In a blog article, Hassabis listed several projects and organizations already using AlphaFold. They include:

“As researchers seek cures for diseases and pursue solutions to other big problems facing humankind—including antibiotic resistance, microplastic pollution, and climate change—they will benefit from fresh insights in the structure of proteins,” Hassabis wrote.

Because of the deep financial backing that Alphabet/Google can offer, it is reasonable to predict that DeepMind will make progress with its AI technology that regularly adds capabilities and accuracy, allowing AlphaFold to be effective for many uses.

This will be particularly true for the development of new diagnostic assays that will give clinical laboratories better tools for diagnosing disease earlier and more accurately.

—Donna Marie Pocius

Related Information:

DeepMind Creates ‘Transformative’ Map of Human Proteins Drawn by Artificial Intelligence

AlphaFold Can Accurately Predict 3D Models of Protein Structures and Has the Potential to Accelerate Research in Every Field of Biology

Putting the Power of AlphaFold into the World’s Hands

Highly Accurate Protein Structure Prediction with AlphaFold

American Society for Clinical Pathology Website Was Hacked Last Year, Possibly Exposing Credit Card Information of Members and Online Shoppers

Thousands of pathologists and medical technologists may have had their private data stolen, though ASCP investigators did not confirm this as having happened

For a “limited time period” in 2020, the American Society for Clinical Pathology (ASCP) was the target of a cyberattack that “potentially exposed payment card data as it was

being entered” on the ASCP website, according to a letter sent by McDonald Hopkins PLC to then Attorney General of the New Hampshire Department of Justice (DOJ) Gordon MacDonald.

In “World’s Largest Pathologists Association Discloses Credit Card Incident,” Bleeping Computer, an information security and technology news publication, reported that on March 11 of this year, ASCP employees discovered their system had been hacked. They discerned that between March 3, 2020, and November 6, 2020, the attackers had access to personal information being entered on the ASCP website.

Bleeping Computer noted that “[the ASCP’s] member list includes over 100,000 medical laboratory professionals, clinical and anatomic pathologists, residents, and students.”

In a statement, the ASCP said, “We have recently been informed that our e-commerce website was the target of a cybersecurity attack that, for a limited time period, potentially exposed payment card data as it was entered on our website.”

The information that may have been stolen includes data pertaining to individual credit cards, names, credit or debit card numbers, expiration dates, and security codes (CVV) associated with the cards.

“We engaged external forensic investigators and data privacy professionals and conducted a thorough investigation into the incident,” the ASCP said in the statement.

What Type of Cyberattack?

Evidence collected regarding the ASCP data breach indicates the attack was part of a web-skimming assault. This involves installing malicious software, such as Magecart, onto an e-commerce website. The software acts like a credit card skimmer enabling hackers to steal the payment and personal information of customers who are actively inputting data on the attacked website. The data is then sent to remote servers where it is used for identity theft or sold to others.

ASCP says it does not permanently store any of its customers’ payment card data on its servers, Bleeping Computer reported, which greatly reduces the potential risk of data exposure. In addition, the ASCP has implemented extra security measures to prevent similar incidents from happening in the future.

“We resolved the issue that led to the potential exposure on the website. We implemented additional security safeguards to protect against future intrusions. We continue ongoing intensive monitoring of our website, to ensure that it exceeds industry standards to be secure of any malicious activity,” the ASCP said in a statement, Bleeping Computer reported.

Peter-Blum-Group-Product-Manager-Google
In an interview with TechRepublic, Peter Blum (above), Group Product Manager at Google, discussed steps companies can take to proactively manage the threat of Magecart cyberattacks. “The best defense against Magecart attacks is preventing access,” Blum said. “Online companies need a solution that intercepts all of the API [application programming interface] calls your website makes to the browser and blocks access to sensitive data you have not previously authorized. This prevents any malicious script, or any non-critical third-party script, from gaining access to information your customers enter on your website. This same system should also have a monitoring component to alert companies when a third-party attempts to access sensitive information.” (Photo copyright: LinkedIn.)

Federal Rules and Regulations Concerning HIPAA and PHI

The ASCP stated they have no evidence that any customer data was misused after the incident occurred. As of May 14, the organization has not made an official, public statement regarding the situation on their website, but affected individuals and jurisdictions were sent letters to inform them of the data breach.

With over 130,000 current members, Chicago-based ASCP is the largest professional organization for pathologists and clinical laboratory professionals in the world. The organization did not respond to Dark Daily’s inquiries regarding the data breach.

Although no reported violations under the Health Insurance Portability and Accountability Act (HIPAA) occurred in this ASCP data breach, it should be noted that there are rules under HIPAA for data breaches where Protected Health Information (PHI) may have been compromised.

Under the HIPAA Breach Notification Rule, entities that were hacked must perform the following steps:

  • Notify affected individuals within 60 days of the discovery of the breach. Notification should include a brief description of the breach, the types of information that may have been compromised, steps affected individuals should take to protect themselves from potential harm, and a description of what the organization is doing to investigate the breach, mitigate the harm, and prevent further breaches.
  • Hacked entity must inform the Secretary of Health and Human Services (HHS) within 60 days of the breach discovery if 500 or more individuals were affected. For breaches affecting less than 500 people, the breached entity may notify the Secretary of such breaches on an annual basis.
  • For breaches affecting more than 500 individuals, the hacked entity must also provide a notification to prominent media outlets, typically via a press release, that serve the state or jurisdiction.

This breach of credit card information belonging to a sizeable number of pathologists and clinical laboratory professionals using the ASCP website should be a warning to all clinical laboratories and anatomic pathology groups—along with colleges, societies, and associations—that their websites and digital systems can be attacked at any time. As well, clinical laboratory and pathology professionals should be on the alert and take all necessary precautions to minimize the possibility of data breaches.

—JP Schlingman

Related Information:

World’s Largest Pathologists Association Discloses Card Incident

American Society for Clinical Pathology—Incident Notification

ASCP Disclosed Payment Card Web Skimming Incident

Magecart Attack: What It is, How it Works, and How to Prevent It

What is Magecart? How This Hacker Group Steals Payment Card Data

A Deep Dive into Magecart: What Is Magecart?

Compliance Perspectives: State Enforcement Raises Liability Risks of Data Breaches

Three Federal Agencies Warn Healthcare Providers of Pending Ransomware Attacks; Clinical Laboratories Advised to Assess Their Cyberdefenses

University of California San Diego Researchers Demonstrates How Easily Medical Laboratory Systems and Devices Can Be Compromised, Putting Patient Lives at Risk

WannaCry Ransomware Holds Critical Data Hostage Worldwide, Including UK’s National Health Service and Russia’s Interior Ministry

C₂N Diagnostics Releases PrecivityAD, the First Clinical Laboratory Blood Test for Alzheimer’s Disease

The St. Louis-based in vitro diagnostics (IVD) developer is making PrecivityAD available to physicians while awaiting FDA clearance for the non-invasive test

Clinical laboratories have long awaited a test for Alzheimer’s disease and the wait may soon be over. The first blood test to aid physicians and clinical laboratories in the diagnosis of patients with memory and cognitive issues has been released by C₂N Diagnostics of St. Louis. The test measures biomarkers associated with amyloid plaques in the brain—the pathological hallmark of Alzheimer’s.

C₂N Diagnostics was cofounded by David Holtzman, MD, and Randall Bateman, MD, of Washington University School of Medicine in St. Louis. They headed research that led to the PrecivityAD test and are included on a patent the university licensed to C₂N.

In a news release, PrecivityAD describes the laboratory-developed test (LDT) as “a highly sensitive blood test using mass spectrometry and is performed in C₂N’s CLIA-certified laboratory. While the test by itself cannot diagnose Alzheimer’s disease … the test is an important new tool for physicians to aid in the evaluation process.”

PrecivityAD provides physicians with an Amyloid Probability Score (APS) for each patient. For example:

  • A low APS (0-36) is consistent with a negative amyloid PET scan result and, thus, has a low likelihood of amyloid plaques, an indication other causes of cognitive symptoms should be investigated.
  • An intermediate APS (37-57) does not distinguish between the presence or absence of amyloid plaques and indicates further diagnostic evaluation may be needed to assess the underlying cause(s) for the patient’s cognitive symptoms.
  • A high APS (58-100) is consistent with a positive amyloid positron-emission tomography (PET) scan result and, thus, a high likelihood of amyloid plaques. Presence of amyloid plaques is consistent with an Alzheimer’s disease diagnosis in someone who has cognitive decline, but alone is insufficient for a final diagnosis.

The $1,250 test is not currently covered by health insurance or Medicare. However, C₂N Diagnostics has pledged to offer discounts to patients based on income levels.

Jeff Cummings, MD, ScD
Jeff Cummings, MD, ScD (above) Research Professor, Department of Brain Health, University of Nevada, Las Vegas, said in a C₂N Diagnostics press release, “A blood test for Alzheimer’s is a game changer.” While there is no cure for Alzheimer’s, a non-invasive blood test can help providers diagnose patients when their symptoms are mild and often misdiagnosed. “Advances in Alzheimer’s diagnostics are key to more effective identification, diagnosis, and clinical trial recruitment,” he added. Currently, brain changes caused by the disease are most commonly identified through PET scans. (Photo copyright: University of Nevada Las Vegas.)

Additional Research Requested

While C₂N’s PrecivityAD is the first test of its kind to reach the commercial market, it has not received US Food and Drug Administration (FDA) clearance, nor has the company published detailed data on the test’s accuracy. However, the PrecivityAD website says the laboratory-developed test “correctly identified brain amyloid plaque status (as determined by quantitative PET scans) in 86%” of 686 patients, all of whom were older than 60 years of age with subjective cognitive impairment or dementia.

But some Alzheimer’s advocacy groups are tempering their enthusiasm about the breakthrough. Eliezer Masliah, MD, Director of the Division of Neuroscience, National Institute on Aging, told the Associated Press (AP), “I would be cautious about interpreting any of these things,” he said of the company’s claims. “We’re encouraged, we’re interested, we’re funding this work, but we want to see results.”

Heather Snyder, PhD, Vice President, Medical and Scientific Relations at the Alzheimer’s Association told the AP her organization will not endorse a test without FDA clearance. The Alzheimer’s Association also would like to see the test studied in larger and diverse populations. “It’s not quite clear how accurate or generalizable the results are,” she said.

Braunstein defended the decision to make the test for Alzheimer’s immediately available to physicians, asking in the AP article, “Should we be holding that technology back when it could have a big impact on patient care?”

C₂N CEO Joel Braunstein, MD, told the AP C₂N Diagnostics will seek FDA clearance for PrecivityAD and publish study results. Earlier this month, PrecivityAD received CE marking from the European Union, as well as approval for its clinical laboratory to conduct tests for California patients, making it available in 46 states, the District of Columbia, and Puerto Rico, a press release noted.

ADDF Supports C2N’s Alzheimer’s Diagnostic Test

Howard Fillit, MD, Founding Executive Director and Chief Science Officer of the Alzheimer’s Drug Discovery Foundation (ADDF), maintains the first-of-its-kind blood test is an important milestone in Alzheimer’s research. ADDF invested in C₂N’s development of the test.

“Investing in biomarker research has been a core goal for the ADDF because having reliable, accessible, and affordable biomarkers for Alzheimer’s diagnosis is step one in finding drugs to prevent, slow, and even cure the disease,” Fillit said in an ADDF news release.

C₂N is also developing a Brain Health Panel to detect multiple blood-based markers for Alzheimer’s disease that will aid in better disease staging, treatment monitoring, and differential diagnosis.

Second Alzheimer’s Test in Development

Soon medical laboratories may have two different in vitro diagnostic tests for Alzheimer’s disease. On December 2, Fujirebio Diagnostics filed for FDA 510(k) premarket clearance for its Lumipulse G β-Amyloid Ratio (1-42/1-40) test, which looks for biomarkers found in cerebral spinal fluid.

The FDA granted the test Breakthrough Device Designation in February 2019, which may shorten the timeline to approval. The test utilizes Fujirebio’s Lumipulse G1200 instrument system.

“Accurate and earlier intervention will also facilitate the development of new drug therapies, which are urgently needed as the prevalence of Alzheimer’s disease increases with a rapidly aging population globally,” Fujirebio Diagnostics President and CEO Monte Wiltse said in a news release.

The Lumipulse G β-Amyloid test, which is intended for use in patients aged 50 and over presenting with cognitive impairment, has received CE-marking for use in the European Union.

Clinical laboratory managers will want to keep a close eye on rapidly evolving developments in testing for Alzheimer’s disease. It is the sixth leading cause of death in the United States and any clinical laboratory test that could produce an early and accurate diagnosis of Alzheimer’s Disease would become a valuable tool for physicians who treat patients with the symptoms of Alzheimer’s.

—Andrea Downing Peck

Related Information:

Alzheimer’s Breakthrough: C₂N First to Offer a Widely Accessible Blood Test

First Blood Test to Help Diagnose Alzheimer’s Goes on Sale

PrecivityAD Blood Test’s Reach Expands to Europe and California Following Initial Launch; Test Detects Alzheimer’s Disease Pathology

Fujirebio Diagnostics Files 510(k) with FDA for Lumipulse G β-Amyloid Ratio (1-42/1-40) In Vitro Diagnostic Test

Alzheimer’s Drug Discovery Foundation Announces Major Funding Commitment to Validate an Amyloid Blood Test for Non-invasive Early Detection of Alzheimer’s

Alzheimer’s Disease Facts and Figures

Google DeepMind’s AlphaFold Wins CASP14 Competition, Helps Solve Mystery of Protein Folding in a Discovery That Might be Used in New Medical Laboratory Tests

The AI protein-structure-prediction system may ‘revolutionize life sciences by enabling researchers to better understand disease,’ researchers say

Genomics leaders watched with enthusiasm as artificial intelligence (AI) accelerated discoveries that led to new clinical laboratory diagnostic tests and advanced the evolution of personalized medicine. Now Google’s London-based DeepMind has taken that a quantum step further by demonstrating its AI can predict the shape of proteins to within the width of one atom and model three-dimensional (3D) structures of proteins that scientist have been trying to map accurately for 50 years.

Pathologists and clinical laboratory professionals know that it is estimated that there are around 30,000 human genes. But the human proteome has a much larger number of unique proteins. The total number is still uncertain because scientists continue to identify new human proteins. For this reason, more knowledge of the human protein is expected to trigger an expanding number of new assays that can be used by medical laboratories for diagnostic, therapeutic, and patient-monitoring purposes.

DeepMind’s AI tool is called AlphaFold and the protein-structure-prediction system will enable scientists to quickly move from knowing a protein’s DNA sequence to determining its 3D shape without time-consuming experimentation. It “is expected to accelerate research into a host of illnesses, including COVID-19,” BBC News reported.

This protein-folding breakthrough not only answers one of biology’s biggest mysteries, but also has the potential to revolutionize life sciences by enabling researchers to better understand disease processes and design personalized therapies that target specific proteins.

“It’s a game changer,” Andrei Lupas, PhD, Director at the Max Planck Institute for Developmental Biology in Tübingen, Germany, told the journal Nature. “This will change medicine. It will change research. It will change bioengineering. It will change everything.”

AlphaFold Wins Prestigious CASP14 Competition

In November, DeepMind’s AlphaFold won the 14th Community Wide Experiment on Critical Assessment of Techniques for Protein Structure Prediction (CASP14), a biennial competition in which entrants receive amino acid sequences for about 100 proteins whose 3D structures are unknown. By comparing the computational predictions with the lab results, each CASP14 competitor received a global distance test (GDT) score. Scores above 90 out of 100 are considered equal to experimental methods. AlphaFold produced models for about two-thirds of the CASP14 target proteins with GDT scores above 90, a CASP14 press release states.

According to MIT Technology Review, DeepMind’s discovery is significant. That’s because its speed at predicting the structure of proteins is unprecedented and it matched the accuracy of several techniques used in clinical laboratories, including:

Unlike the laboratory techniques, which, MIT noted, are “expensive and slow” and “can take hundreds of thousands of dollars and years of trial and error for each protein,” AlphaFold can predict a protein’s shape in a few days.

“AlphaFold is a once in a generation advance, predicting protein structures with incredible speed and precision,” Arthur D. Levinson, PhD, Founder and CEO of Calico Life Sciences, said in a DeepMind blogpost. “This leap forward demonstrates how computational methods are poised to transform research in biology and hold much promise for accelerating the drug discovery process.”

AlphaFold graph chart
Science reported that AlphaFold, which scored a median of 87—25 points above the next best predictions—did so well that CASP14 organizers worried DeepMind may have been somehow cheated. To validate the results, they asked AlphaFold to complete a “special challenge”—modeling a membrane protein from an ancient species of microbes called archaea, which they had been unable to model satisfactorily using X-ray crystallography. AlphaFold returned a detailed image of a three-part protein with two long helical arms in the middle. “It’s almost perfect,” Andrei Lupas, PhD, Director at the Max Planck Institute for Developmental Biology, told Science. “They could not possibly have cheated on this. I don’t know how they do it.”  (Graphic copyright: DeepMind/Nature.)

Revolutionizing Life Sciences

John Moult, PhD, Professor, University of Maryland Department of Cell Biology and Molecular Genetics, who cofounded CASP in 1994 and chairs the panel, pointed out that scientists have been attempting to solve the riddle of protein folding since Christian Anfinsen, PhD, was awarded the 1972 Nobel Prize in Chemistry for showing it should be possible to determine the shape of proteins based on their amino acid sequence.

“Even tiny rearrangements of these vital molecules can have catastrophic effects on our health, so one of the most efficient ways to understand disease and find new treatments is to study the proteins involved,” Moult said in the CASP14 press release. “There are tens of thousands of human proteins and many billions in other species, including bacteria and viruses, but working out the shape of just one requires expensive equipment and can take years.”

Science reported that the 3D structures of only 170,000 proteins have been solved, leaving roughly 200 million proteins that have yet to be modeled. Therefore, AlphaFold will help researchers in the fields of genomics, microbiomics, proteomics, and other omics understand the structure of protein complexes.

“Being able to investigate the shape of proteins quickly and accurately has the potential to revolutionize life sciences,” Andriy Kryshtafovych, PhD, Project Scientist at University of California, Davis, Genome Center, said in the press release. “Now that the problem has been largely solved for single proteins, the way is open for development of new methods for determining the shape of protein complexes—collections of proteins that work together to form much of the machinery of life, and for other applications.”

Clinical laboratories play a major role in the study of human biology. This breakthrough in genomics research and new insights into proteomics may provide opportunities for medical labs to develop new diagnostic tools and assays that better identify proteins of interest for diagnostic and therapeutic purposes.

—Andrea Downing Peck

Related Information:

AI Solution to a 50-Year-Old Science Challenge Could ‘Revolutionize’ Medical Research

‘It Will Change Everything’: DeepMind’s AI Makes Gigantic Leap in Solving Protein Structures

Protein Structure Prediction Using Multiple Deep Neural Networks in the 13th Critical Assessment of Protein Structure Prediction (CASP13)

AlphaFold: A Solution to a 50-Year-Old Grand Challenge in Biology

DeepMind’s Protein-Folding AI Has Solved A 50-Year-Old Grand Challenge of Biology

‘The Game Has Changed.’ AI Triumphs at Solving Protein Structures

One of Biology’s Biggest Mysteries ‘Largely Solved’ by AI

Fitbit Receives FDA Approval for a Wearable Device App That Detects Atrial Fibrillation

Many companies want to adapt consumer wearables to monitor health conditions, including biomarkers tested by medical laboratories

Clinical laboratory managers know that wearable devices for monitoring biophysical functions or measuring biomarkers are becoming more complex and capable thanks to advances in miniaturization, informatics, software, and artificial intelligence machine learning that enable new functions to be developed and proved to be accurate.

In September, Fitbit (NYSE:FIT), took that a step further. The San Francisco-based maker of personal fitness technology, “received 510(k) clearance from the US Food and Drug Administration (FDA), as well as Conformité Européenne (CE marking) in the European Union, for its electrocardiogram (ECG) app to assess heart rhythm for atrial fibrillation (AFib),” according to a press release.

The fact that Google is currently in the process of acquiring Fitbit for $2.1 billion may indicate that wearable devices to help physicians and patients diagnose and monitor health conditions will be big business in the future.

The new ECG app is available on Fitbit Sense
The new ECG app is available on Fitbit Sense (above), an “advanced health smartwatch.” To use the app, wearers place their finger and thumb to the stainless-steel corners on the watch and remain still for 30 seconds. The app analyzes the heart’s rhythm for signs of AFib. Individuals can take readings of their heart rhythm at any time, monitor for irregularities, and save and share the data. (Photo copyright: Fitbit.)

Helping Doctors ‘Stay Better Connected’ to Their Patients

“Helping people understand and manage their heart health has always been a priority for Fitbit, and our new ECG app is designed for those users who want to assess themselves in the moment and review the reading later with their doctor,” said Eric Friedman, Fitbit co-founder and Chief Technology Officer, in the press release.

Prior to submitting the device for approval to regulatory agencies, Fitbit conducted the clinical trial in regions throughout the US to evaluate the device’s ability to accurately detect AFib from normal sinus rhythm and generate ECG traces. The researchers proved that their algorithm was able to detect 98.7% of AFib cases (sensitivity) and was able to accurately identify normal sinus rhythms (specificity) in 100% of the cases.

Venkatesh Raman, MD, interventional cardiologist and Medical Director of the Cardiac Catheterization Lab at 609-bed MedStar Georgetown University Hospital, was Principal Investigator for the clinical study on Fitbit’s ECG app. “Physicians are often flying blind as to the day-to-day lives of our patients in between office visits. I’ve long believed in the potential for wearable devices to help us stay better connected, and use real-world, individual data to deliver more informed, personalized care,” he said in the press release.

“Given the toll that AFib continues to take on individuals and families around the world,” Raman continued, “I’m very enthusiastic about the potential of this tool to help people detect possible AFib—a clinically important rhythm abnormality—even after they leave the physician’s office.”

Fitbit ECG App Receives European CE Marking

In addition to receiving approval for the Fitbit ECG app in the US, the device also received CE marking (Conformité Européenne) for use in some European countries.

In October 2020, the app was made available to Fitbit Sense users in the US, Austria, Belgium, Czech Republic, France, Germany, Ireland, Italy, Luxembourg, the Netherlands, Poland, Portugal, Romania, Spain, Sweden, Switzerland, and the United Kingdom. The device also received approval for use in Hong Kong and India. 

It is estimated that more than 33.5 million people globally have AFib, an irregular heart rhythm (arrhythmia) that can lead to stroke, blood clots, or heart failure. The American Heart Association estimates that at least 2.7 million Americans currently live with the condition. The most common symptoms experienced by those with the condition are: 

  • Irregular heartbeat,
  • Heart palpitations (rapid, fluttering, quivering or pounding),
  • Lightheadedness,
  • Extreme fatigue,
  • Shortness of breath, and
  • Chest pain.

Risk factors for AFib include advancing age, high blood pressure, obesity, diabetes, European ancestry, hyperthyroidism, chronic kidney disease, alcohol use, smoking, and known heart issues such as heart failure, ischemic heart disease, and enlargement of the chambers on the left side of the heart.

According to the Centers for Disease Control and Prevention (CDC), there are more than 454,000 hospitalizations annually in the US that list AFib as the primary diagnosis. In 2018, AFib was mentioned on 175,326 death certificates with the condition being the underlying cause of death in 25,845 of those cases.

The CDC reports that cases are increasing and projects that by 2030 12.1 million people in the US will have AFib. Many people are asymptomatic of the illness and do not know they have it, which can make AFib more difficult to diagnose.

“Early detection of AFib is critical, and I’m incredibly excited that we are making these innovations accessible to people around the world to help them improve their heart health, prevent more serious conditions, and potentially save lives,” Friedman said, in a statement.

Clinical laboratory managers should monitor these developments closely. Fitbit’s FDA clearance and CE Marking of its ECG app suggest this trend is accelerating.

—JP Schlingman

Related Information:

Fitbit’s ECG App Gets FDA Nod to Track Heart Rhythm Irregularities

Fitbit Receives Regulatory Clearance in Both the United States and Europe for ECG App to Identify Atrial Fibrillation (AFib)

Fitbit’s Sense Smartwatch Gets FDA Clearance for EKG App

What the Apple Watch’s FDA Clearance Actually Means

FDA Confirms Samsung’s Galaxy Watch 3 is Cleared for EKG, Just Like the Apple Watch

Fitbit to Be Acquired by Google

;