News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Stanford’s New Ant-sized Radio Could Accelerate Massive Connectivity through the Internet of Things and Enable Real-time Medical Laboratory Testing

Micro-miniature intelligent radio devices are poised to revolutionize the connectivity of objects in ways that could open doors to new diagnostic devices to help pathologists detect disease

In the future, both in vitro diagnostics and in vivo diagnostics will utilize ever-smaller devices. The shrinking size of these analytical devices will give pathologists and clinical laboratory scientists new tools to detect disease earlier, while monitoring patient with chronic conditions in real-time in consultation with attending physicians.

Now comes news of a significant breakthrough that will allow researchers to shrink down the size of devices used for a wide range of applications, including medical laboratory testing. Engineers from Stanford University and the University of California, Berkeley, have created a prototype radio-on-a-chip the size of an ant.

Their invention could enable a vast assortment of gadgets to connect and communicate with each other, and with physicians, via the Internet. The new device has the potential for numerous applications for pathology and medical laboratories, and could be used in many types of diagnostic testing devices, including in vivo diagnostics. (more…)

$900 Point-of-Care DNA Nanopore Sequencer May Hit Market in Next 12 Months

Even small clinical pathology laboratories could afford this  new miniaturized gene sequencer

Is the profession of pathology  and clinical laboratory medicine ready to deal with point-of-care DNA sequencing technologies? A company in the United Kingdom says that, as early as next year, it can bring a portable high-throughput unit to market that will sell for around US $900.

Researchers at Oxford Nanopore Technologies Ltd. (ON) have developed new-generation sequencing technology that uses nanopores to deliver ultra-long, read-length, single molecule sequence data, the company stated in a press release. And it does this with competitive accuracy on a high-throughput electronic platform. (more…)

;