News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Researchers at Stanford University Discover Gene Variant That Appears to Protect Individuals from Both Alzheimer’s and Parkinson’s Disease

Study findings may lead to new clinical laboratory tests, as well as vaccines and immunotherapies for neurodegenerative diseases

Research into the human genome continues to produce useful new insights. This time, a study led by researchers at Stanford University identified a genetic variation that is believed to help “slow or even stall” progression of neurodegenerative diseases, including Alzheimer’s and Parkinson’s, according to a press release. Because these genetic variations are common, it is likely that diagnostic tests can be developed for use by clinical laboratories.

Researchers at Stanford Medicine led the study which discovered that approximately one in five individuals carry the gene variant, a protective allele identified as DR4 (aka, HLA-DR4). It’s one of a large number of alleles found in a gene known as DRB1.

DRB1 is part of a family of genes collectively known as the human lymphocyte antigen complex or HLA. The HLA-DRB1 gene plays a crucial role in the ability of the immune system to see a cell’s inner contents.

The Stanford scientists published their findings in the journal PNAS titled, “Multiancestry Analysis of the HLA Locus in Alzheimer’s and Parkinson’s Diseases Uncovers a Shared Adaptive Immune Response Mediated by HLA-DRB1*04 Subtypes.” Approximately 160 researchers from roughly 25 countries contributed to the work. 

Emmanuel Mignot, MD, PhD

“In an earlier study, we’d found that carrying the DR4 allele seemed to protect against Parkinson’s disease,” said Emmanuel Mignot, MD, PhD (above), Director of the Stanford Center for Narcolepsy, in a Stanford press release. “Now, we’ve found a similar impact of DR4 on Alzheimer’s disease.” Clinical laboratories may soon have new vaccines for both neurodegenerative diseases. (Photo copyright: Stanford University.)


DR4 Found to Impact Both Parkinson’s and Alzheimer’s Diseases

To perform their research, the team examined a large collection of medical and genetic databases from 176,000 people who had either Alzheimer’s or Parkinson’s disease. The people involved in the study were from numerous countries located in East Asia, Europe, the Middle East and South America. Their genomes were then compared with people who did not have the diseases, focusing on the incidence and age of onset.

“In an earlier study we’d found that carrying the DR4 allele seemed to protect against Parkinson’s disease,” said Mignot in the Stanford press release. “Now, we’ve found a similar impact of DR4 on Alzheimer’s disease.”

The team found that about 20% to 30% of people carry DR4, and that they have around a 10% risk reduction for developing the two diseases. 

“That this protective factor for Parkinson’s wound up having the same protective effect with respect to Alzheimer’s floored me,” said Emmanuel Mignot, MD, PhD, the Craig Reynolds Professor of Sleep Medicine in the Department of Psychiatry and Behavioral Sciences at Stanford University and the Director of the Stanford Center for Narcolepsy, in the Stanford Medicine press release. “The night after we found that out, I couldn’t sleep.”

The scientists also analyzed data from autopsied brains of more than 7,000 Alzheimer’s patients and discovered that individuals who carry DR4 had fewer neurofibrillary tangles and that those tangles are composed mainly of modified tau proteins, a common biomarker for Alzheimer’s.

The presence of these tangles corresponds with the severity of Alzheimer’s disease. They are not typically seen in Parkinson’s patients, but the Stanford team found that Parkinson’s patients who did carry DR4 experienced later onset of symptoms.

Mignot stated that tau, which is essential in Alzheimer’s, may also play a role in Parkinson’s, but that further research is required to prove its function.

Both diseases are characterized by the progressive loss of certain nerve cells or neurons in the brain and are linked to an accumulation of abnormal proteins. The Stanford researchers suggested that the DR4 gene variant may help protect individuals from Alzheimer’s and Parkinson’s by preventing the buildup of tau proteins.

“This is a very interesting study, providing additional evidence of the involvement of the immune system in the pathogenesis of Alzheimer’s and Parkinson’s,” neurologist Wassim Elyaman, PhD, Assistant Professor of Neurological Sciences in Neurology, the Taub Institute and the Institute for Genomic Medicine at Columbia University, told Live Science.

New Vaccines and Immunotherapies

According to the Alzheimer’s Association, more than six million Americans are currently living with Alzheimer’s disease and approximately one in three Americans die with Alzheimer’s or another dementia. 

The Parkinson’s Foundation states that nearly one million Americans are currently living with Parkinson’s disease, and that number is expected to rise to 1.2 million by 2030. Parkinson’s is the second-most common neurodegenerative disease after Alzheimer’s disease.

Even though the genetic analysis of the Stanford research is strong, more immune cell and blood-based research is needed to definitively establish how tau is connected to the two diseases.

This research could have implications for clinical laboratories by giving them biomarkers for a useful new diagnostic test, particularly for diagnosing Alzheimer’s and Parkinson’s.

Further, Mignot suggested that an effective vaccine could delay the onset or slow the progression of both diseases. He hopes to test his hypothesis on genetically modified mice and eventually human subjects.

—JP Schlingman

Related Information:

Stanford Medicine-led Study Finds Genetic Factor Fends Off Alzheimer’s and Parkinson’s

Gene Variant Carried by One in Five People May Guard Against Alzheimer’s and Parkinson’s, Massive Study Finds

Multiancestry Analysis of the HLA Locus in Alzheimer’s and Parkinson’s Diseases Uncovers a Shared Adaptive Immune Response Mediated by HLA-DRB1*04 Subtypes

Alzheimer’s Disease: Tau Biology and Pathology

Tau Protein and Alzheimer’s Disease: What’s the Connection?

C₂N Diagnostics Releases PrecivityAD, the First Clinical Laboratory Blood Test for Alzheimer’s Disease

Genomic Study Reveals Role of Human Papillomavirus in Cervical Cancer and Identifies Novel Therapeutic Targets for the Disease

Findings may help physicians tailor cervical cancer therapies to specific gene mutations and improve the accuracy of diagnostic screening tests for this disease

New scientific knowledge about the role of human papillomavirus (HPV) in the growth of cervical cancer is creating excitement within the medical community. Among other things, these findings could encourage more widespread vaccination against HPV. That in turn would lead to reduced Pap smear testing by pathology laboratories over time.

For these reasons, cytopathologists and cytotechnologists will be particularly interested in the research findings that were published as a first-ever, international genomic study of cervical cancer, which was published online December 25, 2013, at Nature.com. Researchers discovered that the location where HPV integrates itself into the human genome, is where it causes amplified gene expression that promotes and elevates mutated gene activity that may cause cervical cancer to develop. (more…)

;