News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

All of Us Genomic Research Program Hits Milestone of 250,000 Whole Genome Sequences

Expanded genomic dataset includes a wider racial diversity which may lead to improved diagnostics and clinical laboratory tests

Human genomic research has taken another important step forward. The National Institutes of Health’s All of Us research program has reached a milestone of 250,000 collected whole genome sequences. This accomplishment could escalate research and development of new diagnostics and therapeutic biomarkers for clinical laboratory tests and prescription drugs.

The wide-reaching program aimed at gathering diverse genomic data is giving scientists access to the nearly quarter million whole genome sequences—as well as genotyping arrays, long-read genome sequences, and more—to aid precision medicine studies, the National Institutes of Health (NIH) announced in a news release.

The NIH’s All of Us program “has significantly expanded its data to now include nearly a quarter million whole genome sequences for broad research use. About 45% of the data was donated by people who self-identify with a racial or ethnic group that has been historically underrepresented in medical research,” the news release noted.

Detailed information on this and future data releases is available at the NIH’s All of us Data Roadmap.

Andrea Ramirez, MD

“For years, the lack of diversity in genomic datasets has limited our understanding of human health,” said Andrea Ramirez, MD, Chief Data Officer, All of Us Research Program, in the news release. Clinical laboratories performing genetic testing may look forward to new biomarkers and diagnostics due to the NIH’s newly expanded gene sequencing data set. (Photo copyright: Vanderbilt University.)

Diverse Genomic Data is NIH’s Goal

NIH launched the All of Us genomic sequencing program in 2018. Its aim is to involve more than one million people from across the country and reflect national diversity in its database.

So far, the program has grown to include 413,450 individuals, with 45% of participants self-identifying “with a racial or ethnic group that has been historically under-represented in medical research,” NIH said.

“By engaging participants from diverse backgrounds and sharing a more complete picture of their lives—through genomic, lifestyle, clinical, and social environmental data—All of Us enables researchers to begin to better pinpoint the drivers of disease,” said Andrea Ramirez, MD, Chief Data Officer of the All of Us research program, in the news release.

More than 5,000 researchers are currently registered to use NIH’s All of Us genomic database. The vast resource contains the following data:

  • 245,350 whole genome sequences, which includes “variation at more than one billion locations, about one-third of the entire human genome.”
  • 1,000 long-read genome sequences to enable “a more complete understanding of the human genome.”
  • 413,350 survey responses.
  • 337,500 physical measurements.
  • 312,900 genotyping arrays.
  • 287,000 electronic health records.
  • 15,600 Fitbit records (data on sleep, activity, step count, heart rate).

The research could lead to:

  • Better understanding of genetic risk factors for disease.
  • Development of predictive markers for disease risk.
  • Analysis of drugs effectiveness in different patients.

Data Shared with Participants

Participants in the All of Us program, are also receiving personalized health data based on their genetic sequences, which Dark Daily previously covered.

In “US National Institutes of Health All-of-Us Research Program Delivering Genetic Test Results and Personalized Disease Risk Assessments to 155,000 Study Participants,” we reported how the NIH had “begun returning personalized health-related DNA results” to more than 155,000 study participants. In addition, participants who requested their results will receive genetic reports that detail whether they “have an increased risk for specific health conditions and how their body might process certain medications.”

“Through a partnership with participants, researchers, and diverse communities across the country, we are seeing incredible progress towards powering scientific discoveries that can lead to a healthier future for all of us,” said Josh Denny, MD, Chief Executive Officer, All of Us Research Program, in the news release.

Cloud-based Tool Aids Access to Data

The All of Us program makes a cloud-based platform—called Researcher Workbench—available to scientists for the study of genetic variation and other issues, Inside Precision Medicine explained.

“[Researchers] can get access to the tools and the data they need to conduct a project with our resources in as little as two hours once their institutional data use agreement is signed,” said Fornessa Randal, Executive Director, Center for Asian Health Equity, University of Chicago, in a YouTube video about Researcher Workbench.

A paper published in Annual Review of Biomedical Data Science titled, “The All of Us Data and Research Center: Creating a Secure, Scalable, and Sustainable Ecosystem for Biomedical Research,” noted that  the diseases most often being studied by researchers using All of Us data include:

Database’s Growth Good for Precise Diagnostics

For diagnostics professionals, the growth of available whole human genome sequences as well as access to participants in the All of Us program is noteworthy.

Also impressive is the better representation of diversity. Such information could result in medical laboratories having an expanded role in precision medicine.  

—Donna Marie Pocius

Related Information:

All of Us Research Program Makes Nearly 250,000 Whole Genome Sequences Available to Advance Precision Medicine

US National Institutes of Health All of Us Research Program Delivering Genetic Test Results and Personalized Disease Risk Assessments to 155,000 Study Participants

All of Us Research Hub

All of Us Researcher Workbench

All of Us Program Expands Whole Genome Data Available to Researchers

All of Us Releases Almost 250,000 Genomes

All of Us Data and Research Center Creating a Secure, Scalable, and Sustainable Ecosystem for Biomedical Research

Mapping Out the Human Genome

Breakthrough DNA Editing Tool May Help Pathologists Develop New Diagnostic Approaches to Identify and Treat the Underlying Causes of Diseases at the Genetic Level

The advent of the CRISPR/Cas9 genetic editing tool is already generating novel therapies for diseases and will create new opportunities for pathologists and medical laboratories

In just 24 months, a new gene-editing tool has become the hot topic worldwide among researchers working to understand DNA and develop ways to manipulate it for therapeutic purposes. It goes by the acronym CRISPR and it may soon become quite familiar to most pathologists and medical laboratory scientists.

CRISPR stands for clustered regularly interspaced short palindromic repeats. The gene editing platform is known as CRISPR/CAS9. (more…)

Whole Animal Assays Use Lab-On-A-Chip at MIT

MIT researchers expand genetic screening with new diagnostic technologies

Make way for what is being called “whole animal assays.” This new approach utilizes a lab on a chip to allow researchers to perform whole animal screening at sub-cellular resolutions in what is described as a “high throughput” manner. The new diagnostic technology was developed at Massachusetts Institute of Technology (MIT)

MIT researchers developed this unique whole animal assay testing chip using the nematode Caenorhabditis elegans. The resulting lab-on-a-chip makes it easier to conduct  genetic research into neurological conditions such as Alzheimer’s and Parkinson’s disease. The traditional method of manipulating C. elegans involves using small glass and metal picks and anesthetizing the animals before submitting them for high-resolution imaging, according to Mehmet Fatih Yanik, an Assistant Professor at MIT, and Christopher Rohde, a Ph.D. candidate in the Department of Electrical Engineering and Computer Science at MIT. Yanik and Rohde wrote about their research in a report published in Biomedical Optics & Medical Imaging earlier this year. Yanik runs the BioPhotonics, BioScreening and NanoManipulation Group lab at MIT. (more…)

As Both Senator and President, Obama Actively Supports Personalized Medicine and Genetic Testing

It may be that personalized medicine is becoming one of those All-American icons, like apple pie and mom. That’s because personalized medicine, as a concept and goal for the American healthcare system, seems to have universal support. If true, this is a positive long-term development for clinical laboratories and pathology groups.

Take the new president, for example. Barack Obama has long contended that personalized medicine must be at the heart of health care reform. “The issue of getting the right treatment to the right person goes with his [Obama’s] whole emphasis on health reform,” said Mark McClellan, who headed the FDA and Medicare under the Bush Administration. McClellan was speaking about President Obama during an interview with MSNBC. “If we’re thinking about reforming the healthcare system, we should be thinking about what medicine will be like down the road when healthcare reform is fully implemented,” observed McClellan during his MSNBC interview.

(more…)

;