News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Data from Basket Studies Help Anatomic Pathologists Better Understand Effectiveness of Oncology Drugs

Pathologists can be paid for their role in identifying and recruiting patients for basket studies and reporting results of medical laboratory tests

Anatomic pathologists who biopsy, report, and diagnosis cancer will benefit from a better understanding of basket studies and their application in developing cancer treatment therapies. Such studies can lead to more documentation of the effectiveness of various therapies for cancers with specific gene signatures

The US National Library of Clinical Medicine defines basket studies as “a new sort of clinical studies to identify patients with the same kind of mutations and treat them with the same drug, irrespective of their specific cancer type. In basket studies, depending on the mutation types, patients are classified into ‘baskets.’ Targeted therapies that block that mutation are then identified and assigned to baskets where patients are treated accordingly.”

Also known as basket or bucket trials, basket studies involve patients who have different cancers at a various sites, such as lung, breast, and prostate, but whom share a common genetic mutation, explained Ryan Chandanais, MS, CPhT, Emerging Therapeutics Analyst at Diplomat Pharmaceuticals, Flint, Mich., in an article he penned for Pharmacy Times titled, “Basket Studies: An Innovative Approach for Oncology Trials.”

The popularity of basket studies has increased in tandem with genomic medicine’s rise, stated an article in Cancer Therapy Advisor titled, “Wider Use of Basket Trials Could Hasten Development of Precision Therapies.”

“Historically, cancer clinical trials have been centered on the treatment of cancer based on the anatomic location in the body, like breast cancer or brain cancer or lung cancer. A basket study is a novel trial design that includes patients with a certain molecular aberration regardless of location or tissue of origin of cancer in the body. The genomic revolution in oncology has fueled these studies,” Vivek Subbiah, MD, Associate Professor and Medical Director, Clinical Center for Targeted Therapy ( Phase 1 trials program), at the University of Texas MD Anderson Cancer Center in Houston, told Cancer Therapy Advisor. (Photo copyright: MD Anderson Cancer Center.)

Basket Studies Get Results

During a basket study, researchers may find that a drug’s effectiveness at targeting “a genetic mutation at one site can also treat the same genetic mutation in cancer in another area of the body,” noted Pharmacy Times, which also pointed out basket studies are often starting points for larger oncology trials about drugs.

For example, it was a basket study which found that vemurafenib (marketed as Zelboraf), intended for treatment of V600E, a mutation of the BRAF gene, may also treat Erdheim-Chester disease (a rare blood disorder) in patients who have the BRAF V600 gene mutation, Pharmacy Times reported.

Additionally, the US Food and Drug Administration’s approval of the cancer drug Vitrakvi (larotrectinib), an oral TRK inhibitor, marked the first treatment to receive a “tumor-agnostic indication at time of initial FDA approval,” a Bayer news release stated. The drug’s efficacy, Pharmacy Times noted, was found in a “pivotal” basket study.

Basket Studies, a Master Protocol Trial Design

The basket study technique is an example of a master protocol trial design. The FDA defines a master protocol as “a protocol designed with multiple substudies, which may have different objectives and involves coordinated efforts to evaluate one or more investigational drugs in one or more disease subtypes within the overall trial structure. A master protocol may be used to conduct the trial(s) for exploratory purposes or to support a marketing application and can be structured to evaluate, in parallel, different drugs compared to their respective controls or to a single common control.”

Other master protocols include umbrella studies and platform studies, according to Cancer Therapy Advisor, which noted that each master protocol trial design has its own unique objectives:

  • Umbrella studies look at the effectiveness of multiple drugs on one type of cancer;
  • Platform trials investigate the effectiveness of multiple therapies on one disease on an ongoing basis; and
  • Basket studies focus on the effectiveness of one therapy on patients with different cancers based on a biomarker.

“In contrast to traditional trials designs, where a single drug is tested in a single disease population in one clinical trial, master protocols use a single infrastructure, trial design, and protocol to simultaneously evaluate multiple drugs and or disease populations in multiple substudies, allowing for efficient and accelerated drug development,” states the FDA draft guidance, “Master Protocols: Efficient Clinical Trial Design Strategies to Expedite Development of Oncology Drugs and Biologics.”

Final FDA guidance on master protocols design is expected early in 2020, an FDA spokesperson told Cancer Therapy Advisor.

While master protocol studies show promise, they generally have small sample sizes, noted researchers of a study published in the journal Trials. And some researchers have ethical concerns about basket studies.

Scientist at the Jagiellonian University Medical College in Krakow, Poland, published a study in BMC Medical Ethics, titled, “Umbrella and Basket Trials In Oncology: Ethical Challenges,” in which they cite their concerns with basket studies, which are related to scientific validity, risk-benefit ratio, and informed consent.

Nevertheless, basket studies appear to hold promise for precision medicine. Anatomic pathologists may want to follow some of them or find a way to get involved through identifying clinical laboratory tests and reporting the results.

—Donna Marie Pocius

Related Information:

Basket Studies: An Innovative Approach for Oncology Trials

Basket Studies: Redefining Clinical Trials in the Era of Genome-Driven Oncology

Wider Use of Basket Trials Could Hasten Development of Precision Therapies

FDA Approves Vitrakvi (larotrectinib), the First Ever TRK Inhibitor for Patients with Advanced Solid Tumors Harboring an NTRK Gene Fusion

FDA: Design Strategies to Expedite Development of Oncology Drugs and Biologics Guidance for Industry

Systematic Review of Basket Trials, Umbrella Trials, and Platform Trials: A Landscape Analysis of Master Protocols

Basket Trials for Intractable Cancer

Umbrella and Basket Trials in Oncology: Ethical Challenges

Master Protocols: Efficient Clinical Trial Design Strategies to Expedite Development of Oncology Drugs and Biologics

Precision Medicine’s Most Successful Innovators to Speak in Nashville, including Vanderbilt Univ. Med. Center, Illumina, Geisinger Health, Northwell Health

Genetic testing, gene sequencing done by clinical laboratories and anatomic pathology groups underpin how first-mover hospitals, health networks are improving patient outcomes

In just a few weeks, an unprecedented gathering will bring together the nation’s most prominent first-mover health networks, hospitals, and companies operating programs that deliver precision medicine daily to patients in clinical care settings.

On Sept. 12-13, 2018, “Breakthroughs with Genetic and Precision Medicine: What All Health Network CEOs Need to Know,” will take place at the Hutton Hotel in Nashville, Tenn. “What differentiates these sessions is the emphasis on each organization’s strategy, how it launched its precision medicine programs, what is improving in patient outcomes, and how payers are reimbursing for these services,” stated Robert L. Michel, Executive Director of the Precision Medicine Institute in Austin, Texas. “This is not about the science of precision medicine. Rather, it is about the practical elements required for any hospital, health system, or physician group to actually set up and deliver a precision medicine service to patients on a daily basis.”

Precision Medicine’s First-Mover Hospitals and Providers to Speak

Health systems and hospitals headlining this special conference are:

Companies scheduled to present include:

  • Illumina;
  • Humana;
  • Sonic Healthcare USA;
  • Genome Medical;
  • CQuentia, and,
  • S. HealthTek.

Exhibitors include the above, plus: Thermo Fisher, Philips, Sunquest, and MyGenetx.

“This meeting will give you the insider’s understanding about delivering precision medicine in real patient care settings that cannot be accessed at other venues,” noted Michel. “The goal is to have first-mover providers share their experiences, thus providing a road map that other hospitals, physician practices, and other providers at this conference can take back and follow with confidence.”

Michel said that sessions will be dedicated to precision medicine strategies, how it is being used in oncology, primary care, the role of pharmacogenomics, and use of healthcare big data. Speakers will describe the clever ways innovative health networks and hospitals are using healthcare big data to inform physicians in ways that improve outcomes, lower the cost of care and, in two real-world case studies, are generating seven-figure reimbursement from shared savings programs with certain health plans.

This year’s keynote address is by Jeffrey R. Balser, MD, PhD (above), President and CEO, Vanderbilt University Medical Center and Dean of the Vanderbilt University School of Medicine, one of the most progressive and innovative health systems in the country. (Photo copyright: Vanderbilt University.)

Using Healthcare Big Data to Achieve Precision Medicine Success, Shared Savings

“Shared savings successes will be one of the breakthrough achievements reported at the Nashville event,” he explained. “We’ve invited two prominent provider organizations to share how they are using healthcare big data to support physicians in achieving improved patient outcomes while at the same time impressively reducing the overall cost of care. To my knowledge, this is the first time these precision medicine case studies have been presented at a national meeting.”

One such presentation will be delivered by Philip Chen, MD, PhD, Chief Healthcare Informatics Officer at Sonic Healthcare USA Austin, Texas. Their precision medicine goal was to use healthcare big data to help physicians better manage diabetes and other chronic conditions in their practices. This program involved a large primary care practice and a major health insurer. Now in its fourth year, Sonic Healthcare USA is earning six- and seven-figure payments as part of a shared savings arrangement with the insurer.

“Shared savings is definitely a Holy Grail for all large health networks and physician groups as payers drop fee-for-service and switch providers to value-based payments,” said Michel. “The experience of Sonic Healthcare in this innovative three-way collaboration with an insurer and a very large physician group demonstrates that a strong data analytics capability and engagement with physicians can simultaneously bend the cost-of-care-curve downward while improving patient outcomes, as measured year-by-year. This is a presentation every C-Suite executive should attend.

Strategic, Business, Operational, and Financial Aspects of Precision Medicine

“This conference—centered upon the strategic, business, operational, and financial aspects of a precision medicine program—came to be because it is the unmet need of every health network CEO and C-Suite administrator,” observed Michel. “Every healthcare leader tasked with developing an effective clinical and financial strategy for his or her institution knows that the real challenge in launching a precision medicine program for patient care is not the science.

“Rather, the true challenges come from how to support clinical needs with the availability of capital, recruiting experienced clinicians, and putting the right informatics capabilities in place,” he stated. “Most hospital and health network administrators recognize the risk of launching a precision medicine program too early. They know such programs can suck up huge amounts of resources without producing significant improvements in patient care. What adds to the risk is that payers may be slow to reimburse for precision medicine.”

Register today to guarantee your place at “Breakthroughs with Genetic and Precision Medicine: What All Health Network CEOs Need to Know,” (or copy and paste this URL in your browser: https://dark.regfox.com/precision-medicine-institute).

Register by September 1 and save $300 on tuition! Plus, take advantage of our special Team Discount Program, so you and your key team members can get the most out of the conference by attending together.

“Breakthroughs with Genetic and Precision Medicine: What All Health Network CEOs Need to Know” is the gold-standard summit for everyone active or interested in succeeding with precision medicine programs. Don’t miss out—register today!

—Michael McBride

Related Information:

Breakthroughs with Genetic and Precision Medicine: What All Health Network CEOs Need to Know—Full Agenda and Details

Breakthroughs with Genetic and Precision Medicine: What All Health Network CEOs Need to Know—Registration information

Ongoing Growth in Consumer Genetic Testing Pressures Hospitals, Healthcare Networks to Educate and Prepare Physicians

Syapse Creates Precision Medicine Council That Quickly Attracted 200 of the Biggest Hospitals and Health Networks as Members

When Ramping Up Genomic Programs, Health Network/Hospital CEOs and Executives Must Consider Emerging Technologies, Swiftly Rising Consumer Demand

Precision Medicine Success Hinges on Diagnostics’ Clinical Utility

Precision Medicine and Sharing Medical Data in Real Time: Opportunities and Barriers

Ongoing Growth in Volume of Clinical Laboratory Tests That Support Precision Medicine Due to Physician Acceptance; Payers Still Have Concerns

 

Pathologists and Clinical Laboratories May Soon Have a Test for Identifying Cardiac Patients at Risk from Specific Heart Drugs by Studying the Patients’ Own Heart Cells

Stanford University School of Medicine researchers grew heart muscle cells and used them, along with CRISPR, to predict whether a patient would benefit or experience bad side effects to specific therapeutic drugs

What would it mean to pathology groups if they could grow heart cells that mimicked a cardiac patient’s own cells? What if clinical laboratories could determine in vitro, using grown cells, if specific patients would have positive or negative reactions to specific heart drugs before they were prescribed the drug? How would that impact the pathology and medical laboratory industries?

We may soon know. Researchers at Stanford University School of Medicine (Stanford) have begun to answer these questions. (more…)

;