News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Cold Spring Harbor Laboratory Researchers Develop Method That Converts Aggressive Cancer Cells into Healthy Cells in Children

If further research confirms these findings, clinical laboratory identification of cancer cells could lead to new treatments for certain childhood cancers

Can cancer cells be changed into normal healthy cells? According to molecular biologists at the Cold Spring Harbor Laboratory (CSHL) in Long Island the answer is, apparently, yes. At least for certain types of cancer. And clinical laboratories and anatomic pathologists may play a key role in identifying these specific cancer cells and then guiding physicians in selecting the most appropriate therapies.

The cancer cells in question are called rhabdomyosarcoma (RMS) and are “particularly aggressive,” according to ScienceAlert. Generally, and most sadly, the cancer primarily affects children below the age of 18. It begins in skeletal muscle, mutates throughout the body, and is often deadly.

“Treatment usually involves chemotherapy, surgery, and radiation procedures. Now, new research by scientists at Cold Spring Harbor Laboratory demonstrates differentiation therapy as a new treatment option for RMS,” Genetic Engineering and Biotechnology News (GEN) reported.

For those young cancer patients, this new research could become a lifesaving therapy as further studies validate the approach, which has been in development for six years.

The CSHL researchers published their findings in the journal Proceedings of the National Academy of Sciences (PNAS) titled, “Myo-Differentiation Reporter Screen Reveals NF-Y as An Activator of PAX3–FOXO1 in Rhabdomyosarcoma.”

Christopher Vakoc, MD, PhD

“Every successful medicine has its origin story,” said Christopher Vakoc, MD, PhD (above), a molecular biologist at Cold Spring Harbor Laboratory, who led the team that develop the method for converting cancer cells into healthy cells. “And research like this is the soil from which new drugs are born.” As these findings are confirmed, it may be that clinical laboratories and anatomic pathologists will be needed to identify the specific cancer cells in patients once treatment is developed. (Photo copyright: Cold Spring Harbor Laboratory.)

Differentiation Therapy

According to an article in the Chinese Journal of Cancer on the National Library of Medicine website, “Differentiation therapy is based on the concept that a neoplasm is a differentiation disorder [aka, differentiation syndrome] or a dedifferentiation disease. In response to the induction of differentiation, tumor cells can revert to normal or nearly normal cells, thereby altering their malignant phenotype and ultimately alleviating the tumor burden or curing the malignant disease without damaging normal cells.”

Vakoc and his team first pursued differentiation therapy to treat Ewing sarcoma, a pediatric cancer that forms in soft tissues or in bone. In January 2023, GEN reported that the researchers had discovered that “Ewing sarcoma could potentially be stopped by developing a drug that blocks the protein known as ETV6.”

“This protein is present in all cells. But when you perturb the protein, most normal cells don’t care,” Vakoc told GEN. “The process by which the sarcoma forms turns this ETV6 molecule—this relatively innocuous, harmless protein that isn’t doing very much—into something that’s now controlling a life-death decision of the tumor cell.”

The researchers discovered that when ETV6 was blocked in lab-grown Ewing sarcoma cells, the cells became normal, healthy cells. “The sarcoma cell reverts back into being a normal cell again,” they told GEN. “The shape of the cell changes. The behavior of the cells changes. A lot of the cells will arrest their growth. It’s really an explosive effect.”

The scientists then turned their attention on Rhabdomyosarcoma to see if they could elicit a similar response.

“In this study, we developed a high-throughput genetic screening method to identify genes that cause rhabdomyosarcoma cells to differentiate into normal muscle. We used this platform to discover the protein NF-Y as an important molecule that contributes to rhabdomyosarcoma biology. CRISPR-based genetic targeting of NF-Y converts rhabdomyosarcoma cells into differentiated muscle, and we reveal the mechanism by which this occurs,” they wrote in PNAS.

“Scientists have successfully induced rhabdomyosarcoma cells to transform into normal, healthy muscle cells. It’s a breakthrough that could see the development of new therapies for the cruel disease, and it could lead to similar breakthroughs for other types of human cancers,” ScienceAlert reported.

“The cells literally turn into muscle,” Vakoc told ScienceAlert. “The tumor loses all cancer attributes. They’re switching from a cell that just wants to make more of itself to cells devoted to contraction. Because all its energy and resources are now devoted to contraction, it can’t go back to this multiplying state,” he added.

Promising New Therapies for Multiple Cancers in Children

Differentiation therapy as a treatment option gained popularity when “scientists noticed that leukemia cells are not fully mature, similar to undifferentiated stem cells that haven’t yet fully developed into a specific cell type. Differentiation therapy forces those cells to continue their development and differentiate into specific mature cell types,” ScienceAlert noted.

Vakoc and his team had previously “effectively reversed the mutation of the cancer cells that emerge in Ewing sarcoma.” It was those promising results from differentiation therapy that inspired the team to push further and attempt success with rhabdomyosarcoma.

Their results are “a key step in the development of differentiation therapy for rhabdomyosarcoma and could accelerate the timeline for which such treatments are expected,” ScienceAlert commented.

Developing New Therapies for Deadly Cancers

Vakoc and his team are considering differentiation therapy’s potential effectiveness for other types of cancer as well. They note that “their technique, now demonstrated on two different types of sarcoma, could be applicable to other sarcomas and cancer types since it gives scientists the tools needed to find how to cause cancer cells to differentiate,” ScienceAlert reported.

“Since many forms of human sarcoma exhibit a defect in cell differentiation, the methodology described here might have broad relevance for the investigation of these tumors,” the researchers wrote in PNAS.

Clinical laboratories and anatomic pathologist play a critical role in identifying many types of cancers. And though any treatment that comes from the Cold Spring Harbor Laboratory research is years away, it illustrates how new insights into the basic dynamics of cancer cells is helping researchers develop effective therapies for attacking those cancers.

—Kristin Althea O’Connor

Related Information:

Aggressive Cancer Cells Transformed into Healthy Cells in Breakthrough

Myo-Differentiation Reporter Screen Reveals NF-Y as An Activator of PAX3–FOXO1 in Rhabdomyosarcoma

Differentiation Therapy: A Promising Strategy for Cancer Treatment

Safer Way to Fight Cancer: Once Rhabdomyosarcoma, Now Muscle

Stopping a Rare Childhood Cancer in Its Tracks

ETV6 Protein Could Be an Important Target for Ewing Sarcoma Treatment

Cancer Cells Turn into Muscle Cells, Potentially Enabling Differentiation Therapy

Novel Ewing Sarcoma Therapeutic Target Uncovered

ETV6 Dependency in Ewing Sarcoma by Antagonism of EWS-FLI1-Mediated Enhancer Activation

Nuclear Transcription Factor Y and Its Roles in Cellular Processes Related to Human Disease

Spatial Transcriptomics Provide a New and Innovative Way to Analyze Tissue Biology, May Have Value in Surgical Pathology

Newly combined digital pathology, artificial intelligence (AI), and omics technologies are providing anatomic pathologists and medical laboratory scientists with powerful diagnostic tools

Add “spatial transcriptomics” to the growing list of “omics” that have the potential to deliver biomarkers which can be used for earlier and more accurate diagnoses of diseases and health conditions. As with other types of omics, spatial transcriptomics might be a new tool for surgical pathologists once further studies support its use in clinical care.

Oncologists and anatomic pathologists are increasingly becoming aware of the power of computer image analysis algorithms that use artificial intelligence (AI) when analyzing digital pathology images, such as whole-slide imaging (WSI), and radiology images. They also are aware that various omics, such as genomics, epigenomics, proteomics, metabolomics, metagenomics, and transcriptomics, are taking greater roles in precision medicine diagnostics as well.

Among this spectrum of omics is spatial transcriptomics, or ST for short.

Spatial Transcriptomics is a groundbreaking and powerful molecular profiling method used to measure all gene activity within a tissue sample. The technology is already leading to discoveries that are helping researchers gain valuable information about neurological diseases and breast cancer.

Marriage of Genetic Imaging and Sequencing

Spatial transcriptomics is a term used to describe a variety of methods designed to assign cell types that have been isolated and identified by messenger RNA (mRNA), to their locations in a histological section. The technology can determine subcellular localization of mRNA molecules and can quantify gene expression within anatomic pathology samples.

In “Spatial: The Next Omics Frontier,” Genetic Engineering and Biotechnology News (GEN) wrote, “Spatial transcriptomics gives a rich, spatial context to gene expression. By marrying imaging and sequencing, spatial transcriptomics can map where particular transcripts exist on the tissue, indicating where particular genes are expressed.”

In an interview with Technology Networks, George Emanuel, PhD, co-founder of life-science genomics company Vizgen, said, “Spatial transcriptomic profiling provides the genomic information of single cells as they are intricately spatially organized within their native tissue environment.

“With techniques such as single-cell sequencing, researchers can learn about cell type composition; however, these techniques isolate individual cells in droplets and do not preserve the tissue structure that is a fundamental component of every biological organism,” he added.

“Direct spatial profiling the cellular composition of the tissue allows you to better understand why certain cell types are observed there and how variations in cell state might be a consequence of the unique microenvironment within the tissue,” he continued. “In this way, spatial transcriptomics allows us to measure the complexity of biological systems along the axes that are most relevant to their function.”

George Emanuel, PhD

“Although spatial genomics is a nascent field, we are already seeing broad interest among the community and excitement across a range of questions, all the way from plant biology to improving our understanding of the complex interactions of the tumor microenvironment,” George Emanuel, PhD (above), told Technology Networks. Oncologists, anatomic pathologists, and medical laboratory scientists my soon see diagnostics that take advantage of spatial genomics technologies. (Photo copyright: Vizgen.)

According to 10x Genomics, “spatial transcriptomics utilizes spotted arrays of specialized mRNA-capturing probes on the surface of glass slides. Each spot contains capture probes with a spatial barcode unique to that spot.

“When tissue is attached to the slide, the capture probes bind RNA from the adjacent point in the tissue. A reverse transcription reaction, while the tissue is still in place, generates a cDNA [complementary DNA] library that incorporates the spatial barcodes and preserves spatial information.

“Each spot contains approximately 200 million capture probes and all of the probes in an individual spot share a barcode that is specific to that spot.”

“The highly multiplexed transcriptomic readout reveals the complexity that arises from the very large number of genes in the genome, while high spatial resolution captures the exact locations where each transcript is being expressed,” Emanuel told Technology Networks.  

Spatial Transcriptomics for Breast Cancer and Neurological Diagnostics

An open-access article published in the journal Breast Cancer Research, titled, “Identification and Transfer of Spatial Transcriptomics Signatures for Cancer Diagnosis,” stated that spatial transcriptomics (ST) could successfully detect breast cancer expression signatures from annotated tissue sections.

In that paper, the authors wrote “we envision that in the coming years we will see simplification, further standardization, and reduced pricing for the ST protocol leading to extensive ST sequencing of samples of various cancer types.”

Spatial transcriptomics is also being used to research neurological conditions and neurodegenerative diseases. ST has been proven as an effective tool to hunt for marker genes for these conditions as well as help medical professionals study drug therapies for the brain.

“You can actually map out where the target is in the brain, for example, and not only the approximate location inside the organ, but also in what type of cells,” Malte Kühnemund, PhD, Director of Research and Development at 10x Genomics, told Labiotech.eu. “You actually now know what type of cells you are targeting. That’s completely new information for them and it might help them to understand side effects and so on.”

The field of spatial transcriptomics is rapidly moving and changing as it branches out into more areas of healthcare. New discoveries within ST methodologies are making it possible to combine it with other technologies, such as Artificial Intelligence (AI), which could lead to powerful new ways oncologists and anatomic pathologists diagnose disease.

“I think it’s going to be tricky for pathologists to look at that data,” Kühnemund said. “I think this will go hand in hand with the digital pathology revolution where computers are doing the analysis and they spit out an answer. That’s a lot more precise than what any doctor could possibly do.”

Spatial transcriptomics certainly is a new and innovative way to look at tissue biology. However, the technology is still in its early stages and more research is needed to validate its development and results.  

Nevertheless, this is an opportunity for companies developing artificial intelligence tools for analyzing digital pathology images to investigate how their AI technologies might be used with spatial transcriptomics to give anatomic pathologists a new and useful diagnostic tool. 

—JP Schlingman

Related Information:

What is Spatial Transcriptomics?

Spatial: The Next Omics Frontier

Spatial Transcriptomics Puts More Biology on the Map

Exploring Tissue Architecture Using Spatial Transcriptomics

Trends, Applications and Advances in Spatial Transcriptomics

Spatially Resolved Transcriptomes—Next Generation Tools for Tissue Exploration

Identification and Transfer of Spatial Transcriptomics Signatures for Cancer Diagnosis

Spatial Transcriptomics: A Window into Disease

Swiss Researchers Use New Mass Spectrometry Technique to Obtain Protein Data, Create Strategy That Could Lead to Clinical Laboratory Advances in Personalized Medicine

Researchers believe they have begun to crack open a ‘black box’ involving the genomes and diseases of individual patients

Researchers in Switzerland are developing a new way to use mass spectrometry to explain why patients respond differently to specific therapies. The method potentially could become a useful tool for clinical laboratories that want to support the practice of precision medicine.

It is also one more example of how mass spectrometry is being used by researchers to develop new types of diagnostic assays that perform as well as traditional clinical laboratory testing methods, such as chemistry and immunoassay.

Thus, the latest research from the Swiss Federal Institute of Technology in Lausanne (EPFL) and ETH Zurich (ETHZ), will be of interest to pathology laboratory managers and medical laboratory scientists. It combines SWATH-MS (Sequential Window Acquisition of all Theoretical Mass Spectra) with genomics, transcriptomics, and other “omics,” to explain why patients respond differently to specific therapies, and to formulate a personalized strategy for individual treatment. (more…)

Study at University of Chicago Uses Supercomputer to Shorten Time Required to Analyze Whole Human Genome Sequences; May Help Pathologists Deliver Faster Diagnoses

Achievement at University of Chicago may help clinical laboratories analyze large quantities of genomic data much faster than ever before, thus shortening the time required to produce a diagnostic result

It’s a breakthrough in the time required to analyze data from whole human genome sequencing. Researchers at the University of Chicago have successfully demonstrated that genome analysis can be radically accelerated.

This could be a big deal for pathologists and clinical laboratory scientists. That’s because a faster time-to-answer from gene sequencing would increase its diagnostic and therapeutic value to clinicians.

Faster and more accurate analysis of genomic data holds the promise of advances in patient management and greater understanding of the genetic causes of risk and disease. This could mean expanded opportunities for pathologists to engage with clinicians in the use of genomic data to inform diagnosis, choice of treatment, and disease management. (more…)

;