Given the large number of mutations found in the SARS-CoV-2 Omicron variant, experts in South Africa speculate it likely evolved in someone with a compromised immune system
As the SARS-CoV-2 Omicron variant spreads around the United States and the rest of the world, infectious disease experts in South Africa have been investigating how the variant developed so many mutations. One hypothesis is that it evolved over time in the body of an immunosuppressed person, such as a cancer patient, transplant recipient, or someone with uncontrolled human immunodeficiency virus infection (HIV).
One interesting facet in the story of how the Omicron variant was being tracked as it emerged in South Africa is the role of several medical laboratories in the country that reported genetic sequences associated with Omicron. This allowed researchers in South Africa to more quickly identify the growing range of mutations found in different samples of the Omicron virus.
“Normally your immune system would kick a virus out fairly quickly, if fully functional,” Linda-Gail Bekker, PhD, of the Desmond Tutu Health Foundation (formerly the Desmond Tutu HIV Foundation) in Cape Town, South Africa, told the BBC.
“In someone where immunity is suppressed, then we see virus persisting,” she added. “And it doesn’t just sit around, it replicates. And as it replicates it undergoes potential mutations. And in somebody where immunity is suppressed that virus may be able to continue for many months—mutating as it goes.”
Multiple factors can suppress the immune system, experts say, but some are pointing to HIV as a possible culprit given the likelihood that the variant emerged in sub-Saharan Africa, which has a high population of people living with HIV.
Li “was among the first to detail extensive coronavirus mutations in an immunosuppressed patient,” the LA Times reported. “Under attack by HIV, their T cells are not providing vital support that the immune system’s B cells need to clear an infection.”
Linda-Gail Bekker, PhD (above), of the Desmond Tutu Health Foundation cautions that these findings should not further stigmatize people living with HIV. “It’s important to stress that people who are on anti-retroviral medication—that does restore their immunity,” she told the BBC. (Photo copyright: Test Positive Aware Network.)
Omicron Spreads Rapidly in the US
Genomics surveillance Data from the CDC’s SARS-CoV-2 Tracking system indicates that on Dec. 11, 2021, Omicron accounted for about 7% of the SARS-CoV-2 variants in circulation, the agency reported. But by Dec. 25, the number had jumped to nearly 60%. The data is based on sequencing of SARS-CoV-2 by the agency as well as commercial clinical laboratories and academic laboratories.
Experts have pointed to several likely factors behind the variant’s high rate of transmission. The biggest factor, NPR reported, appears to be the large number of mutations on the spike protein, which the virus uses to attach to human cells. This gives the virus an advantage in evading the body’s immune system, even in people who have been vaccinated.
“The playing field for the virus right now is quite different than it was in the early days,” Joshua Schiffer, MD, of the Fred Hutchinson Cancer Research Center, told NPR. “The majority of variants we’ve seen to date couldn’t survive in this immune environment.”
One study from Norway cited by NPR suggests that Omicron has a shorter incubation period than other variants, which would increase the transmission rate. And researchers have found that it multiplies more rapidly than the Delta variant in the upper respiratory tract, which could facilitate spread when people exhale.
Using Genomics Testing to Determine How Omicron Evolved
But how did the Omicron variant accumulate so many mutations? In a story for The Atlantic, virologist Jesse Bloom, PhD, Professor, Basic Sciences Division, at the Fred Hutchinson Cancer Research Center in Seattle, described Omicron as “a huge jump in evolution,” one that researchers expected to happen “over the span of four or five years.”
Hence the speculation that it evolved in an immunosuppressed person, perhaps due to HIV, though that’s not the only theory. Another is “that the virus infected animals of some kind, acquired lots of mutations as it spread among them, and then jumped back to people—a phenomenon known as reverse zoonosis,” New Scientist reported.
Still, experts are pointing to emergence in someone with a weakened immune system as the most likely cause. One of them, the L.A. Times reported, is Tulio de Oliveira, PhD, Affiliate Professor in the Department of Global Health at the University of Washington. Oliveira leads the Centre for Epidemic Response and Innovation at Stellenbosch University in South Africa, as well as the nation’s Network for Genomic Surveillance.
The Network for Genomic Surveillance, he told The New Yorker, consists of multiple facilities around the country. Team members noticed what he described as a “small uptick” in COVID cases in Gauteng, so on Nov. 19 they decided to step up genomic surveillance in the province. One private clinical laboratory in the network submitted “six genomes of a very mutated virus,” he said. “And, when we looked at the genomes, we got quite worried because they discovered a failure of one of the probes in the PCR testing.”
Looking at national data, the scientists saw that the same failure was on the rise in PCR (Polymerase chain reaction) tests, prompting a request for samples from other medical laboratories. “We got over a hundred samples from over thirty clinics in Gauteng, and we started genotyping, and we analyzed the mutation of the virus,” he told The New Yorker. “We linked all the data with the PCR dropout, the increase of cases in South Africa and of the positivity rate, and then we began to see it might be a very suddenly emerging variant.”
Oliveira’s team first reported the emergence of the new variant to the World Health Organization, on Nov. 24. Two days later, the WHO issued a statement that named the newly classified Omicron variant (B.1.1.529) a “SARS-CoV-2 Variant of Concern.”
Microbiologists and clinical laboratory specialists in the US should keep close watch on Omicron research coming out of South Africa. Fortunately, scientists today have tools to understand the genetic makeup of viruses that did not exist at the time of SARS 2003, Swine flu 2008/9, MERS 2013.
The antibodies target portions of the SARS-CoV-2 spike protein that resist mutation, potentially leading to better treatments and vaccines
One challenge in the battle against COVID-19 is the emergence of SARS-CoV-2 variants, especially the Delta variant, which may be more resistant to neutralizing antibodies compared with the original coronavirus. But now, scientists led by researchers at the Fred Hutchinson Cancer Research Center (Fred Hutch) in Seattle say they have identified antibodies that could be broadly protective against multiple sarbecoviruses, the subgenus that contains SARS-CoV-2 as well as SARS-CoV-1, the virus responsible for the 2002-2004 severe acute respiratory syndrome (SARS) outbreak.
In “SARS-CoV-2 RBD Antibodies That Maximize Breadth and Resistance to Escape,” the researchers described how they compared 12 antibodies obtained from patients infected with either SARS-CoV-2 or SARS-CoV-1. They pointed to one antibody in particular—S2H97—that could lead to development of new vaccines and therapies against current and future variants. It might even protect against sarbecoviruses that have not yet been identified, they wrote.
Unsaid in the news release about these research findings is the fact that these particular antibodies could eventually become useful biomarkers for clinical laboratory tests designed to help physicians determine which patients have these antibodies—and the protection from infection they represent—and which do not.
So far, however, S2H97 has only been tested in hamsters. But results are promising.
“This antibody, which binds to a previously unknown site on the coronavirus spike protein, appears to neutralize all known sarbecoviruses—the genus of coronaviruses that cause respiratory infections in mammals,” said Jay Nix, PhD, an affiliate in Berkeley Lab’s Biosciences Area and Beamline Director of the Molecular Biology Consortium at Berkeley Lab’s Advanced Light Source (ALS), in a Berkeley Lab news release. “And, due to the unique binding site on mutation-resistant part of the virus, it may well be more difficult for a new strain to escape,” he added.
Scientists have long known that the SARS-CoV-2 virus uses the spike protein to attach to human cells. The federal Centers for Disease Control and Prevention (CDC) notes that the variants have mutations in their spike proteins that make some of them more transmissible.
The Delta variant, the CDC notes, was the predominant variant in the US as of August 28, 2021. It “has been shown to have increased transmissibility, potential reduction in neutralization by some monoclonal antibody treatments, and reduction in neutralization by post-vaccination sera,” the agency states.
The key to S2H97, the researchers wrote, is that it targets a portion of the spike protein that is common among sarbecoviruses, and that is likely to be resistant to mutations.
The researchers used a variety of techniques to analyze how the 12 antibodies bind to the virus. They “compiled a list of thousands of mutations in the binding domains of multiple SARS-CoV-2 variants,” Nature reported. “They also catalogued mutations in the binding domain on dozens of SARS-CoV-2-like coronaviruses that belong to a group called the sarbecoviruses. Finally, they assessed how all these mutations affect the 12 antibodies’ ability to stick to the binding domain.”
William Schaffner, MD (above), Professor of Preventive Medicine in the Department of Health Policy as well as Professor of Medicine in the Division of Infectious Diseases at the Vanderbilt University School of Medicine in Nashville, believes that “people who test positive for SARS-CoV-2 and who are at risk of progressing to severe disease—including those who are over the age of 65 years and those who have weakened immune systems—should talk with a doctor about receiving monoclonal antibody treatment,” Medical News Today reported. “[The monoclonal antibody treatment is] designed to prevent the evolution of the infection from a mild infection into a serious one,” he noted. “In other words, you’ve just [contracted the virus], but we can now give you a medication that will help prevent [you] being hospitalized and getting seriously ill.” (Photo copyright: Vanderbilt University.)
Earlier Antibody Treatment Receives an EUA from the FDA
In issuing the EUA for sotrovimab, the FDA cited “an interim analysis from a phase 1/2/3 randomized, double-blind, placebo-controlled clinical trial in 583 non-hospitalized adults with mild-to-moderate COVID-19 symptoms and a positive SARS-CoV-2 test result. Of these patients, 291 received sotrovimab and 292 received a placebo within five days of onset of COVID-19 symptoms.”
Among these patients, 21 in the placebo group were hospitalized or died compared with three who received the therapy, an 85% reduction.
“While preventive measures, including vaccines, can reduce the total number of cases, sotrovimab is an important treatment option for those who become ill with COVID-19 and are at high risk—allowing them to avoid hospitalization or worse,” stated Adrienne E. Shapiro, MD, PhD, of the Fred Hutchinson Cancer Research Center in a GSK news release. Shapiro was an investigator in the clinical trial.
The EUA allows use of sotrovimab in patients who have tested positive for SARS-CoV-2, have mild-to-moderate symptoms, and “who are at high risk for progression to severe COVID-19, including hospitalization or death. This includes, for example, individuals who are 65 years of age and older or individuals who have certain medical conditions.” It is not authorized for patients who are hospitalized or for those who require oxygen therapy.
The therapy was originally known as VIR-7831. The companies say they have developed a similar treatment, VIR-7832, with modifications designed to enhance T cell function against the disease.
The antibody, they wrote, targets a region of the SARS-CoV-1 spike protein that is “highly conserved” among sarbecoviruses. Clinical laboratory testing, they wrote, also indicated that the therapy was likely to be effective against known SARS-CoV-2 variants.
“Our distinctive scientific approach has led to a single monoclonal antibody that, based on an interim analysis, resulted in an 85% reduction in all-cause hospitalizations or death, and has demonstrated, in vitro, that it retains activity against all known variants of concern, including the emerging variant from India,” stated Vir Biotechnology CEO George Scangos, PhD, in the GSK news release. “I believe that sotrovimab is a critical new treatment option in the fight against the current pandemic and potentially for future coronavirus outbreaks, as well.”
Pathologists and clinical laboratory managers working with rapid molecular tests and antibody tests for COVID-19 will want to monitor the development of monoclonal antibody treatments, as well as further research studies that focus on these specific antibodies.
These new findings may affect how microbiology labs and physicians diagnose and treat several gastrointestinal conditions
Once again, a research effort has teased out new insights into the role the human microbiome plays in our digestive processes. Microbiologist and medical laboratory managers will be interested to learn that, according to the study team, specific microbes have a role in regulating how fast food moves through the digestive tract.
Researchers at the Dey Laboratory in Seattle recently examined the function of microbial bile acid metabolism in gut motility. They determined that “metabolites generated by the gut microbiome regulate gut transit,” according to a new paper published by the Fred Hutchinson Cancer Research Center (Fred Hutch).
“These findings have potential implications for the treatment of gastrointestinal conditions,” noted a Fred Hutch news release. This may mean new clinical laboratory tests to identify these strains of bacteria, along with new therapies for treating patients.
Gut motility (aka, Peristalsis) is the term used to describe the movement of food from the time it enters via the mouth until it leaves the body. This movement, the researchers found, is regulated by interactions between diet, the enteric nervous system (ENS) and the gut microbiota via processes that include bile acid metabolism.
Sex, Diet, and Lifestyle All Affect Treatment for Gastrointestinal Diseases
The Dey Laboratory researchers also discovered that sex was a significant variable in determining transit times with males having larger pro-motility effects.
“Our results suggest that strategies for treating or preventing gastrointestinal diseases may need to be tailored to sex and to biogeography of the gut,” they wrote. “While targeting the microbiome and the ENS is justified, our observation of significant transcriptional responses to defined interventions in a highly controlled gnotobiotic setting also highlights challenges to clinical translation.”
The researchers concluded that:
Gut microbiome-generated bile acids regulate colonic transit via TGR5 protein.
Lithocholic acid (LCA) had the largest colonic pro-motility effect.
Bile acids exert sex-biased effects on gut transit times.
Enteric nervous system (ENS) transcriptional responses are regional- and microbiome-specific.
“The human experience—which reflects the aggregate effects of the innumerable dietary ingredients that we consume daily, the hugely diverse metabolically dynamic microbes that inhabit our guts, our own digestive processes, and the interactions of all of the above that result in thousands of gut metabolites—entails significantly more complex and variable transcriptional responses to environmental cues,” the Dey Laboratory scientists concluded.
To perform their research, the scientists developed both high and low BSH (bile salt hydrolase) bacterial communities for germ-free mice, which are known to exhibit slower gut motility and less complex bile acid profiles than colonized animals. (See graphic above taken from the Dey Laboratory published paper.)
The spice turmeric and dyes were added to the diets of the mice to track gut motility. The mice that were given the BSH-high microbiota had higher fecal concentrations of unconjugated bile acids than those given the BSH-low form of the microbiota. The mice given the BSH-high version also experienced faster transit times, according to the researchers’ iScience paper.
The researchers also concluded that the BSH-high group had greater fecal concentrations of lithocholic acid (LCA) which indicates variations in bile acid metabolism might affect gut transit.
When the scientists infused bile acids directly into mouse colons, variable acids reacted differently with LCA having the fastest transit times. The researchers hypothesized that LCA might signal through a bile receptor known as TGR5 which blocked the effects of LCA on colonic transit times. TGR5, also called G protein-coupled bile acid receptor, functions as a cell surface receptor for bile acids.
The Dey Laboratory team developed a method to measure expression changes in ENS genes and found that neither BSH activity nor gut transit phenotypes were major drivers of gene expression changes. They found that the location of the gut segment, or biogeography, was the leading contributor to ENS signature variance between samples.
“We expected to see shared host transcriptional responses in mice harboring communities with similar metabolic profiles. However, we did not see this for the most part,” explained gastroenterologist Neelendu Dey, MD (above), a physician/scientist and Assistant Professor, Clinical Research Division, at Fred Hutchinson Cancer Research Center, in the press release. “If anything, shared responses were regional, and these signatures did not cluster by BSH/motility phenotypes.” (Photo copyright: Seattle Cancer Care Alliance.)
The scientists “identified consortium-specific transcriptional changes in genes involved in ENS signaling, development, maintenance, and bile acid metabolism, and these differed across regions of the GI tract. Together these findings indicate that ENS transcriptional responses are regional and microbiome-specific,” according to the Fred Hutch press release.
“This remains a confusing part of the story for us—how is it that we can see predictable host motility responses when colonizing the guts of gnotobiotic mice with phenotypically defined communities, but the middle-man (the host enteric nervous system) appears to have such varied responses?” the Dey Laboratory researchers noted in the press release.
“It suggests that gut motility phenotypes that appear similar may in fact represent (when we look under the hood) diverse host physiologic phenotypes that we are just beginning to understand,” they added.
The results of this study could have potential implications for the precision medicine diagnosis and treatment of gastrointestinal illnesses.
Blue Poop Challenge
Earlier this year, people were encouraged to participate in the “blue poop challenge” conducted by research company ZOE Global Limited (ZOE) to determine how long it takes food to travel through the body.
For the Blue Poop Challenge, individuals are asked to eat blue muffins and then report on the company’s website as to how long it took for the blue dye to appear in their stools.
The purpose of this ongoing study is to reveal pertinent information about an individual’s gut health and microbiome.
Since 2010, Dark Daily has reported on dozens of research studies and innovative developments involving human microbiome and gut bacteria and their critical importance in the development of clinical laboratory testing, drug therapies, and precision medicine.
These studies’ findings could lead to improved immune system therapeutics and associated clinical laboratory tests.
“All of this suggests the potential in the future for clinical laboratories and microbiologists to do microbiome testing in support of clinical care,” said Robert Michel, Editor-in-Chief of Dark Daily and its sister publication The Dark Report.
More research is needed in these areas. But gut bacteria and the human microbiome are an integral part of our health and wellbeing. It is worth keeping an eye on new developments in those fields of study.