News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

New Wearable In-Ear Medical Device Helps Sufferers of Standing-Related Ailments

Device is latest example that wearable healthcare devices are moving past simple biomarker monitoring and into the area of assisting in rehab

Companies unrelated to traditional clinical laboratory medicine continue to develop wearable devices that enable individuals to monitor their health while also alerting physicians and caregivers in real time when certain biomarkers are out of range.

One recent example is US biotechnology company STAT Health Informatics in Boston, which has developed a wearable device that monitors blood flow to the ear and face “to better understand symptoms such as dizziness, brain fog, headaches, fainting, and fatigue that occur upon standing,” according to a press release. The tiny device is worn in the ear and connects wirelessly to a smartphone app.

Johns Hopkins University clinically tested the STAT device, and according to Medical Device Network, “It can predict a person fainting minutes before it happens and can be worn with more than 90% of devices that go in or around the ear. It can also be left in while sleeping and showering, meaning less likelihood of removing the device and forgetting to replace it.”

Another notable aspect of this invention is that it’s an example of how the ongoing miniaturization of various technologies makes it possible to invent smaller devices but with greater capabilities. In the case of the STAT device, it combines tiny sensors, Bluetooth, and an equally tiny battery to produce a device that fits in the ear and can function for up to three days before needing a recharge.

It’s easy to imagine these technologies being used for other types of diagnostic testing devices that could be managed by clinical laboratories.

Johns Hopkins published its findings in the Journal of the American College of Cardiology: Clinical Electrophysiology titled, “Monitoring Carotid Blood Flow Using In-Ear Wearable Device During Tilt-Table Testing.”

Daniel Lee

“It’s well understood that the ear is a biometric gold mine because of its close proximity to the brain and major arteries. This allows for new biometrics … to be possible,” said Daniel Lee (above), co-founder and CEO of STAT Health, in a press release. “In addition, the ear is largely isolated from data corruption caused by arm motion—a problem that plagues current wearables and prevents them from monitoring heart metrics during many daily tasks. The ear is really the ideal window into the brain and heart.” Clinical laboratory managers may want to watch how this technology is further developed to incorporate other biomarkers for diseases and health conditions. (Photo copyright: STAT Health.)

How STAT Works

Every time the wearer stands, the STAT device tracks the change in response of blood pressure, heart rate, and blood flow to the head. “The device distills all this information into an ‘Up Score’ to track time spent upright. Its ‘Flow Score’ helps users pace their recovery by watching for blood flow abnormalities,” MassDevice reported.

According to the company’s website, STAT is intended for use in individuals who have been diagnosed with conditions known to suffer from drops in blood flow to the head, such as:

As an individual continues to use the device, STAT “learns about each user’s unique body to provide personalized coaching for healthy lifestyle choices,” MassDevice reported.

Another key factor is the technology built into the device. An optical sensor was chosen over ultrasound because STAT Health felt it was both easy to use and provided precise measurements accessing the shallow ear artery, MassDevice reported.

“Despite its small scale, the device incorporates advanced optical sensors, an accelerometer, a pressure sensor, temperature sensors, artificial intelligence (AI)-edge computing, three-day battery life (or more), and a micro solar panel,” Medical Device Network noted.

wearable device

STAT’s image above demonstrates how truly minute the company’s wearable device is, even though it monitors blood flow to the face and ear looking for signs that the wearer is about to suffer bouts of dizziness or lightheadedness due to a drop in blood flow. (Photo copyright: STAT Health Informatics Inc.)

STAT’s Impact on Users’ Health

STAT’s developers intend the device to help individuals stay on track with their health. “The target population can navigate their condition better. If they’re not standing when they can, they will become deconditioned. This product encourages standing and being upright where possible, as part of rehab,” Lee told Medical Device Network.

Lee has been developing wearable in-ear devices for many years.  

“Nobody has realized the ear’s true potential due to the miniaturization and complex systems design needed to make a practical and user-friendly ear wearable,” he told MassDevice. “After multiple engineering breakthroughs, we’ve succeeded in unlocking the ear to combine the convenience and long-term nature of wearables with the high fidelity nature of obtrusive clinical monitors. No other device comes close along the axis of wearability and cardiac signal quality, which is why we believe STAT is truly the world’s most advanced wearable.”

For clinical laboratories, though STAT is not a diagnostic test, it is the latest example of how companies are developing wearable monitoring devices intended to allow individuals to monitor their health. It moves beyond the simple monitoring of Apple Watch and Fitbit. This device can aid individuals during rehab.

Wearable healthcare devices will continue to be introduced that are smaller, allow more precise measurements of target biomarkers, and alert wearers in real time when those markers are out of range. Keeping in tune with the newest developments will help clinical laboratories and pathologists find new ways to support healthcare providers who recommend these devices for monitoring their patients conditions.

—Kristin Althea O’Connor

Related Information:

STAT Health Introduces First In-Ear Wearable to Measure Blood Flow to the Head for Long COVID, POTS and Other Related Syndromes

Monitoring Carotid Blood Flow Using In-Ear Wearable Device During Tilt-Table Testing

STAT Health Launches First In-Ear Wearable to Measure Blood Flow

Stat Health Launches In-Ear Wearable That Measures Blood Flow

All of Us Genomic Research Program Hits Milestone of 250,000 Whole Genome Sequences

Expanded genomic dataset includes a wider racial diversity which may lead to improved diagnostics and clinical laboratory tests

Human genomic research has taken another important step forward. The National Institutes of Health’s All of Us research program has reached a milestone of 250,000 collected whole genome sequences. This accomplishment could escalate research and development of new diagnostics and therapeutic biomarkers for clinical laboratory tests and prescription drugs.

The wide-reaching program aimed at gathering diverse genomic data is giving scientists access to the nearly quarter million whole genome sequences—as well as genotyping arrays, long-read genome sequences, and more—to aid precision medicine studies, the National Institutes of Health (NIH) announced in a news release.

The NIH’s All of Us program “has significantly expanded its data to now include nearly a quarter million whole genome sequences for broad research use. About 45% of the data was donated by people who self-identify with a racial or ethnic group that has been historically underrepresented in medical research,” the news release noted.

Detailed information on this and future data releases is available at the NIH’s All of us Data Roadmap.

Andrea Ramirez, MD

“For years, the lack of diversity in genomic datasets has limited our understanding of human health,” said Andrea Ramirez, MD, Chief Data Officer, All of Us Research Program, in the news release. Clinical laboratories performing genetic testing may look forward to new biomarkers and diagnostics due to the NIH’s newly expanded gene sequencing data set. (Photo copyright: Vanderbilt University.)

Diverse Genomic Data is NIH’s Goal

NIH launched the All of Us genomic sequencing program in 2018. Its aim is to involve more than one million people from across the country and reflect national diversity in its database.

So far, the program has grown to include 413,450 individuals, with 45% of participants self-identifying “with a racial or ethnic group that has been historically under-represented in medical research,” NIH said.

“By engaging participants from diverse backgrounds and sharing a more complete picture of their lives—through genomic, lifestyle, clinical, and social environmental data—All of Us enables researchers to begin to better pinpoint the drivers of disease,” said Andrea Ramirez, MD, Chief Data Officer of the All of Us research program, in the news release.

More than 5,000 researchers are currently registered to use NIH’s All of Us genomic database. The vast resource contains the following data:

  • 245,350 whole genome sequences, which includes “variation at more than one billion locations, about one-third of the entire human genome.”
  • 1,000 long-read genome sequences to enable “a more complete understanding of the human genome.”
  • 413,350 survey responses.
  • 337,500 physical measurements.
  • 312,900 genotyping arrays.
  • 287,000 electronic health records.
  • 15,600 Fitbit records (data on sleep, activity, step count, heart rate).

The research could lead to:

  • Better understanding of genetic risk factors for disease.
  • Development of predictive markers for disease risk.
  • Analysis of drugs effectiveness in different patients.

Data Shared with Participants

Participants in the All of Us program, are also receiving personalized health data based on their genetic sequences, which Dark Daily previously covered.

In “US National Institutes of Health All-of-Us Research Program Delivering Genetic Test Results and Personalized Disease Risk Assessments to 155,000 Study Participants,” we reported how the NIH had “begun returning personalized health-related DNA results” to more than 155,000 study participants. In addition, participants who requested their results will receive genetic reports that detail whether they “have an increased risk for specific health conditions and how their body might process certain medications.”

“Through a partnership with participants, researchers, and diverse communities across the country, we are seeing incredible progress towards powering scientific discoveries that can lead to a healthier future for all of us,” said Josh Denny, MD, Chief Executive Officer, All of Us Research Program, in the news release.

Cloud-based Tool Aids Access to Data

The All of Us program makes a cloud-based platform—called Researcher Workbench—available to scientists for the study of genetic variation and other issues, Inside Precision Medicine explained.

“[Researchers] can get access to the tools and the data they need to conduct a project with our resources in as little as two hours once their institutional data use agreement is signed,” said Fornessa Randal, Executive Director, Center for Asian Health Equity, University of Chicago, in a YouTube video about Researcher Workbench.

A paper published in Annual Review of Biomedical Data Science titled, “The All of Us Data and Research Center: Creating a Secure, Scalable, and Sustainable Ecosystem for Biomedical Research,” noted that  the diseases most often being studied by researchers using All of Us data include:

Database’s Growth Good for Precise Diagnostics

For diagnostics professionals, the growth of available whole human genome sequences as well as access to participants in the All of Us program is noteworthy.

Also impressive is the better representation of diversity. Such information could result in medical laboratories having an expanded role in precision medicine.  

—Donna Marie Pocius

Related Information:

All of Us Research Program Makes Nearly 250,000 Whole Genome Sequences Available to Advance Precision Medicine

US National Institutes of Health All of Us Research Program Delivering Genetic Test Results and Personalized Disease Risk Assessments to 155,000 Study Participants

All of Us Research Hub

All of Us Researcher Workbench

All of Us Program Expands Whole Genome Data Available to Researchers

All of Us Releases Almost 250,000 Genomes

All of Us Data and Research Center Creating a Secure, Scalable, and Sustainable Ecosystem for Biomedical Research

Mapping Out the Human Genome

NIH’s All-of-Us Research Program Offers Free Genetic Testing to Increase Diversity of Its Database

All-of-Us program is free to participants and provides data to more than 800 research studies for cancer, COVID-19, Alzheimer’s, and other diseases; findings will lead to new biomarkers for clinical laboratory tests

It is hard to say no to free. At least that is what the National Institutes of Health (NIH) is counting on to help increase the size and diversity of its database of genetic sequences. The NIH’s All-of-Us Research Program is offering free genetic testing for all participants in the program, as well as free wearable Fitbits for those selected to provide lifestyle and behavior data.

Many pathologists and clinical laboratory managers know that this group of researchers hope to build a database of more than one million genetic sequences to better understand “how certain genetic traits affect underrepresented communities, which could greatly affect the future of customized healthcare,” CBS affiliate 8 News Now reported.

“Customized healthcare” is a euphemism for precision medicine, and genetic sequencing is increasingly playing a key role in the development of personalized diagnostics and therapeutics for cancer and other deadly diseases.

In “VA’s ‘Million Veterans Program’ Research Study Receives Its 100,000th Human Genome Sequence,” Dark Daily described how the NIH’s All-of-Us program was launched in 2018 to aid research into health outcomes influenced by genetics, environments, and lifestyle. At that time, the program had biological samples from more than 270,000 people with a goal of one million participants.

Matthew Thombs, Senior Project Manager of Digital Health Technology at Scripps Research in La Jolla, Calif., joined the All-of-Us program after losing a family member “to a condition I believe could have been managed with changes to their lifestyle,” he told 8 News Now.

“What we are building will empower researchers with the information needed to make such conclusions (about possible need to change lifestyles) and forever alter how diseases are treated,” he added. “I hope that what we are doing here will help my son grow up in a world where healthcare is more of a priority, and many of the ailments we see today are things of the past.”

Such genetic testing could discover biomarkers for future personalized clinical laboratory diagnostics and drug therapies, a key aspect of precision medicine.

All-of-Us participant being prepped for genetic testing

The photo above shows an All-of-Us participant being prepped to provide a biological sample for genetic testing. According to Matthew Thombs, Senior Project Manager of Digital Health Technology at Scripps Research, “participants can provide as much or as little information as they like, every single data point matters.” The collected data is shared anonymously with more than 800 research studies for COVID-19, Alzheimer’s, cancer, and other diseases, 8 News Now reported. (Photo copyright: KLAS-TV.)

Scripps Research Integrates Mobile Health Technology into All-of-Us Program

A critical aspect of the NIH’s research is determining how people’s behavior combined with their genetics may predispose them to certain diseases. Nonprofit research institution Scripps Research is working with the NIH’s All of Us Research Program to enroll and collect biological samples from one million US residents.

In addition, Scripps is fitting study participants with wearable mobile health devices to capture data on their habits and lifestyles.

“Until now, the treatment and prevention of disease has been based on a ‘one-size-fits-all’ approach, with most therapeutics tailored for the ‘average patient’. However, advances in genomic sequencing, mobile health technologies, and increasingly sophisticated informatics are ushering in a new era of precision medicine. This new approach takes into account differences in people’s genes, environment, and lifestyles giving medical professionals resources to design targeted treatments and prevention strategies for the individual,” Scripps states on its website.

Can wearable fitness devices and related data contribute to research on genetics and healthcare outcomes? Scripps aims to find out. It has fitted 10,000 people in the All-of-Us program with Fitbit devices (Fitbit Charge 4 tracker or Fitbit Versa 3 smartwatch) at no cost. Since February, Scripps has distributed 10,000 Fitbit wearable devices through the All-of-Us program.

“By sharing information about their health, habits, and environment, participants will help researchers understand why people get sick or stay healthy,” the Scripps website adds.

The Scripps researchers plan to analyze how the people use the wearable devices. They are also accumulating data about participants’ physical activity, heart rate, sleep, and other health metrics and outcomes “as part of the broader All of Us program,” a Scripps news release explained.

“This is the first time All of Us is distributing devices to participants. Our goal is to better understand how participants engage during research studies in order to continually improve user experience and participation. We also expect to learn more about how wearable data may inform the personalization of healthcare,” said Julia Moore Vogel, PhD, Director of The Participant Center at the All of Us Research Program at Scripps Research, in the news release.

All-of-Us Program Records ‘Significant Progress in Participant Diversity’

As of June, the NIH has enrolled 386,000 participants into the All-of-Us program, with 278,000 consenting to all of the program’s steps. Eighty percent of biological samples in the collection are from people in communities that have been under-represented in previous biomedical research an NIH new release noted. According to the NIH, that gives the All-of-Us research program “the most diverse dataset.”

What will all this research ultimately bring to clinical laboratories? Who knows? Nevertheless, if federal institutions like the NIH and non-profit research companies like Scripps believe precision medicine is worth investing in, then the All-of-Us program is worth watching.

A diverse database of a million genetic sequences combined with lifestyle and behavioral data may lead to new and improved personalized diagnostics and drug therapies.

—Donna Marie Pocius

Related Information

Free Genetic Testing Offered to Propel Medical Research; All of Us Building “Most Diverse Database”

NIH’s All of Us Research Program Records Significant Participant Diversity and Research Underway

Through All of Us, Scripps Research Launches Wearable Technology Study to Accelerate Precision Medicine

VA’s Million Veterans Program Research Study Receives Its 100,000th Human Genome Sequence

Fitbit Receives FDA Approval for a Wearable Device App That Detects Atrial Fibrillation

Many companies want to adapt consumer wearables to monitor health conditions, including biomarkers tested by medical laboratories

Clinical laboratory managers know that wearable devices for monitoring biophysical functions or measuring biomarkers are becoming more complex and capable thanks to advances in miniaturization, informatics, software, and artificial intelligence machine learning that enable new functions to be developed and proved to be accurate.

In September, Fitbit (NYSE:FIT), took that a step further. The San Francisco-based maker of personal fitness technology, “received 510(k) clearance from the US Food and Drug Administration (FDA), as well as Conformité Européenne (CE marking) in the European Union, for its electrocardiogram (ECG) app to assess heart rhythm for atrial fibrillation (AFib),” according to a press release.

The fact that Google is currently in the process of acquiring Fitbit for $2.1 billion may indicate that wearable devices to help physicians and patients diagnose and monitor health conditions will be big business in the future.

The new ECG app is available on Fitbit Sense
The new ECG app is available on Fitbit Sense (above), an “advanced health smartwatch.” To use the app, wearers place their finger and thumb to the stainless-steel corners on the watch and remain still for 30 seconds. The app analyzes the heart’s rhythm for signs of AFib. Individuals can take readings of their heart rhythm at any time, monitor for irregularities, and save and share the data. (Photo copyright: Fitbit.)

Helping Doctors ‘Stay Better Connected’ to Their Patients

“Helping people understand and manage their heart health has always been a priority for Fitbit, and our new ECG app is designed for those users who want to assess themselves in the moment and review the reading later with their doctor,” said Eric Friedman, Fitbit co-founder and Chief Technology Officer, in the press release.

Prior to submitting the device for approval to regulatory agencies, Fitbit conducted the clinical trial in regions throughout the US to evaluate the device’s ability to accurately detect AFib from normal sinus rhythm and generate ECG traces. The researchers proved that their algorithm was able to detect 98.7% of AFib cases (sensitivity) and was able to accurately identify normal sinus rhythms (specificity) in 100% of the cases.

Venkatesh Raman, MD, interventional cardiologist and Medical Director of the Cardiac Catheterization Lab at 609-bed MedStar Georgetown University Hospital, was Principal Investigator for the clinical study on Fitbit’s ECG app. “Physicians are often flying blind as to the day-to-day lives of our patients in between office visits. I’ve long believed in the potential for wearable devices to help us stay better connected, and use real-world, individual data to deliver more informed, personalized care,” he said in the press release.

“Given the toll that AFib continues to take on individuals and families around the world,” Raman continued, “I’m very enthusiastic about the potential of this tool to help people detect possible AFib—a clinically important rhythm abnormality—even after they leave the physician’s office.”

Fitbit ECG App Receives European CE Marking

In addition to receiving approval for the Fitbit ECG app in the US, the device also received CE marking (Conformité Européenne) for use in some European countries.

In October 2020, the app was made available to Fitbit Sense users in the US, Austria, Belgium, Czech Republic, France, Germany, Ireland, Italy, Luxembourg, the Netherlands, Poland, Portugal, Romania, Spain, Sweden, Switzerland, and the United Kingdom. The device also received approval for use in Hong Kong and India. 

It is estimated that more than 33.5 million people globally have AFib, an irregular heart rhythm (arrhythmia) that can lead to stroke, blood clots, or heart failure. The American Heart Association estimates that at least 2.7 million Americans currently live with the condition. The most common symptoms experienced by those with the condition are: 

  • Irregular heartbeat,
  • Heart palpitations (rapid, fluttering, quivering or pounding),
  • Lightheadedness,
  • Extreme fatigue,
  • Shortness of breath, and
  • Chest pain.

Risk factors for AFib include advancing age, high blood pressure, obesity, diabetes, European ancestry, hyperthyroidism, chronic kidney disease, alcohol use, smoking, and known heart issues such as heart failure, ischemic heart disease, and enlargement of the chambers on the left side of the heart.

According to the Centers for Disease Control and Prevention (CDC), there are more than 454,000 hospitalizations annually in the US that list AFib as the primary diagnosis. In 2018, AFib was mentioned on 175,326 death certificates with the condition being the underlying cause of death in 25,845 of those cases.

The CDC reports that cases are increasing and projects that by 2030 12.1 million people in the US will have AFib. Many people are asymptomatic of the illness and do not know they have it, which can make AFib more difficult to diagnose.

“Early detection of AFib is critical, and I’m incredibly excited that we are making these innovations accessible to people around the world to help them improve their heart health, prevent more serious conditions, and potentially save lives,” Friedman said, in a statement.

Clinical laboratory managers should monitor these developments closely. Fitbit’s FDA clearance and CE Marking of its ECG app suggest this trend is accelerating.

—JP Schlingman

Related Information:

Fitbit’s ECG App Gets FDA Nod to Track Heart Rhythm Irregularities

Fitbit Receives Regulatory Clearance in Both the United States and Europe for ECG App to Identify Atrial Fibrillation (AFib)

Fitbit’s Sense Smartwatch Gets FDA Clearance for EKG App

What the Apple Watch’s FDA Clearance Actually Means

FDA Confirms Samsung’s Galaxy Watch 3 is Cleared for EKG, Just Like the Apple Watch

Fitbit to Be Acquired by Google

XPRIZE Founder Diamandis Predicts Tech Giants Amazon, Apple, and Google Will Be Doctors of The Future

Strategists agree that big tech is disrupting healthcare, so how will clinical laboratories and anatomic pathology groups serve virtual healthcare customers?

Visionary XPRIZE founder Peter Diamandis, MD, sees big tech as “the doctor of the future.” In an interview with Fast Company promoting his new book, “The Future Is Faster Than You Think,” Diamandis, who is the Executive Chairman of the XPRIZE Foundation, said that the healthcare industry is “phenomenally broken” and that Apple, Amazon, and Google could do “a thousandfold” better job.

Diamandis, who also founded Singularity University, a global learning and innovation community that uses exponential technologies to tackle worldwide challenges, according to its website, said, “We’re going to see Apple and Amazon and Google and all the data-driven companies that are in our homes right now become our healthcare providers.”

If this prediction becomes reality, it will bring significant changes in the traditional ways that consumers and patients have selected providers and access healthcare services. In turn, this will require all clinical laboratories and pathology groups to develop business strategies in response to these developments.

Amazon Arrives in Healthcare Markets

Several widely-publicized business initiatives by Amazon, Google, and Apple substantiate these predictions. According to an Amazon blog, healthcare insurers, providers, and pharmacy benefit managers are already operating HIPAA-eligible Amazon Alexa for:

  • Appointments at urgent care facilities,
  • Tracking prescriptions,
  • Employee wellness incentive management, and
  • Care updates following hospital discharge.

For example, the My Children’s Enhanced Recovery After Cardiac Surgery (ERAS Cardiac) program at Boston Children’s Hospital uses Amazon Alexa to share updates on patients’ recovery, the blog noted.

Alexa also enables HIPAA-compliant blood glucose updates as part of the Livongo for Diabetes program. “Our members now have the ability to hear their last blood glucose check by simply asking Alexa,” said Jennifer Schneider, MD, President of Livongo, a digital health company, in a news release.

And Cigna’s “Answers By Cigna” Alexa “skill” gives members who install the option responses to 150 commonly asked health insurance questions, explained a Cigna news release

Google Strikes Agreements with Health Systems 

Meanwhile, Google has agreements with Ascension and Mayo Clinic for the use of Google’s cloud computing capability and more, Business Insider reported.

“Google plans to disrupt healthcare and use data and artificial intelligence,” Toby Cosgrove, Executive Advisor to the Google Cloud team and former Cleveland Clinic President, told B2B information platform PYMNTs.com.

PYMNTs speculated that Google, which recently acquired Fitbit, could be aiming at connecting consumers’ Fitbit fitness watch data with their electronic health records (EHRs).

“Ultimately what’s best is human and AI collaboratively,” Peter Diamandis, MD, founder of XPRIZE Foundation and Singularity University told Fast Company. “But I think for reading x-rays, MRIs, CT scans, genome data, and so forth, that once we put human ego aside, machine learning is a much better way to do that.” (Photo copyright: SALT.)

Apple Works with Insurers, Integrating Health Data

In “UnitedHealthcare Offers Apple Watches to Wellness Program Participants Who Meet Fitness Goals; Clinical Laboratories Can Participate and Increase Revenues,” Dark Daily noted that by “leveraging the popularity of mobile health (mHealth) wearable devices, UnitedHealthcare (UHC) has found a new way to incentivize employees participating in the insurer’s Motion walking program.” UHC offered free Apple Watches to employees willing to meet or exceed certain fitness goals.

The Apple Watch health app also enables people to access medical laboratory test results and vaccination records, and “sync up” information with some hospitals, Business Insider explained.

Virtual Care, a Payer Priority: Survey

Should healthcare providers feel threatened by the tech giants? Not necessarily. However, employers and payers surveyed by the National Business Group on Health (NBGH), an employer advocacy organization, said they want to see more virtual care solutions, a news release stated.

“One of the challenges employers face in managing their healthcare costs is that healthcare is delivered locally, and change is not scalable. It’s a market-by-market effort,” said Brian Marcotte, President and CEO of the NBGH, in the news release. “Employers are turning to market-specific solutions to drive meaningful changes in the healthcare delivery system.

“Virtual care solutions bring healthcare to the consumer rather than the consumer to healthcare,” Marcotte continue. “They continue to gain momentum as employers seek different ways to deliver cost effective, quality healthcare while improving access and the consumer experience.”

More than 50% of employers said their top initiative for 2020 is implementing more virtual care solutions, according to NBGH’s “2020 Large Employers Health Care Strategy and Plan Design Survey.”

AI Will Affect Clinical Laboratories and Pathology Groups

Diamandis is not the only visionary predicting big tech will continue to disrupt healthcare. During a presentation at last year’s Executive War College Conference on Laboratory and Pathology Management in New Orleans, Ted Schwab, a Los Angeles-area healthcare strategist and entrepreneur, said artificial intelligence (AI) will have a growing role in the healthcare industry.

“In AI, there are three trends to watch,” said health strategist Ted Schwab (above) while speaking at the 2019 Executive War College. “The first major AI trend will affect clinical laboratories and pathologists. It involves how diagnosis will be done on the Internet and via telehealth. The second AI trend is care delivery, such as what we’ve seen with Amazon’s Alexa—you should know that Amazon’s business strategy is to disrupt healthcare. And the third AI trend involves biological engineering,” he concluded. (Photo copyright: Dark Daily.)

Schwab’s perspectives on healthcare’s transformation are featured in an article in The Dark Report, Dark Daily’s sister publication, titled, “Strategist Explains Key Trends in Healthcare’s Transformation.”

“If you use Google in the United States to check symptoms, you’ll get five-million to 11-million hits,” Schwab told The Dark Report. “Clearly, there’s plenty of talk about symptom checkers, and if you go online now, you’ll find 350 different electronic applications that will give you medical advice—meaning you’ll get a diagnosis over the internet. These applications are winding their way somewhere through the regulatory process.

“The FDA just released a report saying it plans to regulate internet doctors, not telehealth doctors and not virtual doctors,” he continued. “Instead, they’re going to regulate machines. This news is significant because, today, within an hour of receiving emergency care, 45% of Americans have googled their condition, so the cat is out of the bag as it pertains to us going online for our medical care.”

Be Proactive, Not Reactive, Health Leaders Say

Healthcare leaders need to work on improving access to primary care, instead of becoming defensive or reactive to tech companies, several healthcare CEOs told Becker’s Hospital Review.

Clinical laboratory leaders are advised to keep an eye on these virtual healthcare trends and be open to assisting doctors engaged in telehealth services and online diagnostic activities.

—Donna Marie Pocius

Related Information:

2020 Executive War College on Lab and Pathology Management – April 28-29

Amazon and Apple Will Be Our Doctors in the Future, Says Tech Guru Peter Diamandis

Introducing New Alexa Healthcare Skills

Livongo for Diabetes Program Releases HIPAA-Compliant Amazon Alexa Skill

“Answers by Cigna” Skill for Amazon Alexa Simplifies, Personalizes Healthcare Information

2020 Predictions for Amazon, Haven, Google, Apple

Health Strategies of Google, Amazon, Apple, and Microsoft

How Big Tech Is Disrupting Big Healthcare

Large Employers Double Down on Efforts to Stem Rising U.S. Health Benefit Costs which are Expected to Top $15,000 per Employee in 2020: Employers cite virtual care and strategies to manage high cost claims as top initiatives for 2020

How to Compete Against Amazon, Apple, Google: Three Healthcare CEOS on How to Compete Against the Industry’s Most Disruptive Forces

UnitedHealthcare Offers Apple Watches to Wellness Program Participants Who Meet Fitness Goals; Clinical Laboratories Can Participate and Increase Revenues

Strategist Explains Key Trends in Healthcare’s Transformation

;